Lecture 3

Thursday

3 The vector space of modular forms

The set of modular forms $M_{2 k}$ is a complex vector space, which a priori tells us nothing. To get arithmetic what we really need is that $M_{2 k}$ is finite dimensional.

We will use an argument of Zagier's to show the following:
Theorem 7. $\operatorname{dim} M_{2 k} \leq \frac{2 k}{12}+1$.
The proof will require us to think imaginatively about the upper half plane.

Cut and Paste

In the real setting, the exponential map $e^{x}: \mathbb{R} \rightarrow(0, \infty)$ is one-to-one and onto and its inverse is $\log x:(0, \infty) \rightarrow \mathbb{R}$.

In the complex setting, we can still write $e^{z}: \mathbb{C} \rightarrow \mathbb{C}^{\times}$. Is it one-to-one? Is it onto? How about $\log z$ for $z \in \mathbb{C}^{\times}$?
[Demonstration]
What about \mathcal{H} ? Can we make sense of $\mathcal{H} / \mathrm{SL}_{2}(\mathbb{Z})$?
Lemma 8. A fundamental domain for $\mathcal{H} / \mathrm{SL}_{2}(\mathbb{Z})$ is the region \mathcal{F} consisting of $z \in \mathcal{H}$ with $-\frac{1}{2}<\operatorname{Re} z \leq \frac{1}{2}$ and $|z| \geq 1$ when $\operatorname{Re} z \geq 0$ and $|z|>1$ when $\operatorname{Re} z<0$.

This means that any modular form $f(z) \in M_{2 k}$ is completely characterized by its values on \mathcal{F}.

We can glue \mathcal{F} to produce a punctured sphere, which is the associated Riemann surface to $\mathcal{H} / \mathrm{SL}_{2}(\mathbb{Z})$. There's a catch however: to make this identification geometrically meaningful, for instance to make sure that distances/areas measured in $\mathcal{H} / \mathrm{SL}_{2}(\mathbb{Z})$ be the same as distances/areas measured on the sphere, we need to stretch \mathcal{H} to make it analytically the Riemann sphere.

The main computational result is the following:
Proposition 9. Suppose $f(z)$ is a modular form of weight $2 k$, with zeros at P_{1}, \ldots, P_{d} in the interior of \mathcal{F}. Then

$$
\sum \operatorname{ord}_{P_{i}}(f) \leq \frac{2 k}{12}
$$

The idea is that any analytic function integrates to 0 on any simple closed curve.

Integrating functions with poles

What about functions $f(z)$ which are not power series? We can deal with functions of the form

$$
f(z)=\frac{c}{z-u}+a_{0}+a_{1}(z-u)+a_{2}(z-u)^{2}+\cdots
$$

in which case the function $f(z)$ is said to have a simple pole at u with residue $\operatorname{res}_{u} f(z)=c$.
Lemma 10 (Cauchy integral). Say C is an simple closed curve around u, oriented counterclockwise, and $f(z)$ has a simple pole at u. Then

$$
\int_{C} f(z) d z=2 \pi i \operatorname{res}_{u} f(z)
$$

Proof of Proposition 9

Allow $f(z)$ to possibly have poles on the vertical side of \mathcal{F}, at $i \infty$, at i, at ζ_{3}, and on the bottom arc of \mathcal{F}. [Demonstration of the integral]

Proof of Theorem 7

Suppose $d=\left\lceil\frac{2 k}{12}\right\rceil$. Let's assume, by contradiction, that $\operatorname{dim} M_{2 k}>d$. This means we can find $d+1$ modular forms which are independent over \mathbb{C}, say they are $f_{1}, f_{2}, \ldots, f_{d+1}$.

Pick d random points inside \mathcal{F} (not on the boundary), P_{1}, \ldots, P_{d}, and look at the evaluations

$$
\left(\begin{array}{cccc}
f_{1}\left(P_{1}\right) & f_{2}\left(P_{1}\right) & \ldots & f_{d+1}\left(P_{1}\right) \\
f_{1}\left(P_{2}\right) & f_{2}\left(P_{2}\right) & \ldots & f_{d+1}\left(P_{2}\right) \\
\vdots & \vdots & \vdots & \vdots \\
f_{1}\left(P_{d}\right) & f_{2}\left(P_{d}\right) & \ldots & f_{d+1}\left(P_{d}\right)
\end{array}\right)
$$

By linear algebra, we can always find a linear combination of the $d+1$ colums of this $d \times(d+1)$ matrix which is 0 . This means we can find some scalars a_{1}, \ldots, a_{d+1} (not all 0) such that

$$
a_{1} \text { column }_{1}+a_{2} \text { column }_{2}+\cdots+a_{d+1} \text { column }_{d+1}=0
$$

which means $f(z)=a_{1} f_{1}(z)+\cdots+a_{d+1} f_{d+1}(z)$ has zeros at P_{1}, \ldots, P_{d}. But this is impossible by Proposition 9!

Application

We conclude that

$$
\operatorname{dim} M_{12} \leq \frac{12}{12}+1=2
$$

Since $E_{4}^{3}, E_{6}^{2} \in M_{12}$ are linearly independent (check!), it follows that $\Delta-E_{12}=a E_{4}^{3}+b E_{6}^{2}$ for some scalars a and b. We can compute a, b by looking at the first few coefficients of the q-power series. (See exercise set.)

