Lecture 3	
Thursday	

3 The vector space of modular forms

The set of modular forms M_{2k} is a complex vector space, which a priori tells us nothing. To get arithmetic what we really need is that M_{2k} is **finite dimensional**.

We will use an argument of Zagier's to show the following:

Theorem 7. dim $M_{2k} \le \frac{2k}{12} + 1$.

The proof will require us to think imaginatively about the upper half plane.

Cut and Paste

In the real setting, the exponential map $e^x : \mathbb{R} \to (0, \infty)$ is one-to-one and onto and its inverse is $\log x : (0, \infty) \to \mathbb{R}$.

In the complex setting, we can still write $e^z : \mathbb{C} \to \mathbb{C}^{\times}$. Is it one-to-one? Is it onto? How about $\log z$ for $z \in \mathbb{C}^{\times}$?

[Demonstration]

What about \mathcal{H} ? Can we make sense of $\mathcal{H}/\operatorname{SL}_2(\mathbb{Z})$?

Lemma 8. A fundamental domain for $\mathcal{H}/\operatorname{SL}_2(\mathbb{Z})$ is the region \mathcal{F} consisting of $z \in \mathcal{H}$ with $-\frac{1}{2} < \operatorname{Re} z \leq \frac{1}{2}$ and $|z| \geq 1$ when $\operatorname{Re} z \geq 0$ and |z| > 1 when $\operatorname{Re} z < 0$.

This means that any modular form $f(z) \in M_{2k}$ is completely characterized by its values on \mathcal{F} .

We can glue \mathcal{F} to produce a punctured sphere, which is the associated Riemann surface to $\mathcal{H}/\operatorname{SL}_2(\mathbb{Z})$. There's a catch however: to make this identification geometrically meaningful, for instance to make sure that distances/areas measured in $\mathcal{H}/\operatorname{SL}_2(\mathbb{Z})$ be the same as distances/areas measured on the sphere, we need to stretch \mathcal{H} to make it analytically the Riemann sphere.

The main computational result is the following:

Proposition 9. Suppose f(z) is a modular form of weight 2k, with zeros at P_1, \ldots, P_d in the interior of \mathcal{F} . Then

$$\sum \operatorname{ord}_{P_i}(f) \le \frac{2k}{12}.$$

The idea is that any analytic function integrates to 0 on any simple closed curve.

Integrating functions with poles

What about functions f(z) which are not power series? We can deal with functions of the form

$$f(z) = \frac{c}{z-u} + a_0 + a_1(z-u) + a_2(z-u)^2 + \cdots$$

in which case the function f(z) is said to have a simple pole at u with residue res_u f(z) = c.

Lemma 10 (Cauchy integral). Say C is an simple closed curve around u, oriented counterclockwise, and f(z) has a simple pole at u. Then

$$\int_C f(z)dz = 2\pi i \operatorname{res}_u f(z)$$

Proof of Proposition 9

Allow f(z) to possibly have poles on the vertical side of \mathcal{F} , at $i\infty$, at i, at ζ_3 , and on the bottom arc of \mathcal{F} . [Demonstration of the integral]

Proof of Theorem 7

Suppose $d = \lceil \frac{2k}{12} \rceil$. Let's assume, by contradiction, that dim $M_{2k} > d$. This means we can find d + 1 modular forms which are independent over \mathbb{C} , say they are $f_1, f_2, \ldots, f_{d+1}$.

Pick d random points inside \mathcal{F} (not on the boundary), P_1, \ldots, P_d , and look at the evaluations

$$\begin{pmatrix} f_1(P_1) & f_2(P_1) & \dots & f_{d+1}(P_1) \\ f_1(P_2) & f_2(P_2) & \dots & f_{d+1}(P_2) \\ \vdots & \vdots & \vdots & \vdots \\ f_1(P_d) & f_2(P_d) & \dots & f_{d+1}(P_d) \end{pmatrix}$$

By linear algebra, we can always find a linear combination of the d+1 colums of this $d \times (d+1)$ matrix which is 0. This means we can find some scalars a_1, \ldots, a_{d+1} (not all 0) such that

 $a_1 \operatorname{column}_1 + a_2 \operatorname{column}_2 + \dots + a_{d+1} \operatorname{column}_{d+1} = 0$

which means $f(z) = a_1 f_1(z) + \cdots + a_{d+1} f_{d+1}(z)$ has zeros at P_1, \ldots, P_d . But this is impossible by Proposition 9!

Application

We conclude that

$$\dim M_{12} \le \frac{12}{12} + 1 = 2$$

Since $E_4^3, E_6^2 \in M_{12}$ are linearly independent (check!), it follows that $\Delta - E_{12} = aE_4^3 + bE_6^2$ for some scalars *a* and *b*. We can compute *a*, *b* by looking at the first few coefficients of the *q*-power series. (See exercise set.)