
Lecture 4
Friday

Another approach to counting dimension

This is short. Here’s another approach to counting dimensions of modular forms, that works
in great generality.

Pick f0 2 M2k. If f 2 M2k is any other modular form, then you can look at the quotient
g = f/f0. This function is NOT analytic, only meromorphic, but it satifies that g(�·z) = g(z)
for all � 2 SL2(Z). This means that g is, in fact, a function on the punctured Riemann sphere
X = H/ SL2(Z), as well as at the point at infinity.

Suppose you chose a random meromorphic function g. You could always compute f =
gf0. This function satisfies the functional equations, but is it a modular form? To be so,
you’d need gf0 to be analytic so you’d need div(gf0) to be e↵ective, in other words, that
div g + div f0 � 0. We conclude that M2k is in bijection with L(div f0). The dimension of
this space was the topic of today’s algebraic curves lecture, and Riemann-Roch is a great
way to compute this dimension exactly, as opposed to finding an upper bound only, as we
did in the “integrals on the balloon computation”.

Modular forms of level N

We’ve been dealing with modular forms in M2k and we showed a very strong result about
how to obtain all modular forms: dimM2k is roughly 2k

12 and the modular forms in M2k are
all of the form E2k�12` ·�`. This is enough to prove some beautiful relations, but it is not
the whole story.

Definition 11. Suppose N � 1. A modular form of weight 2k and level N is a function
f : H ! C with the same properties as M2k but we only impose the functional equation

f(
az + b

cz + d
) = (cz + d)2kf(z)

for

✓
a b
c d

◆
2 SL2(Z) such that N | c (these matrices form a subgroup �0(N) of SL2(Z)).

We write M2k(N) for the space of such modular forms.

Theta series

Writing down modular forms is hard because these functions have to be power series in
q that satisfy very strong functional equations. We’ve seen one example, the Eisenstein
series, that we wrote down as a converging series in z and then, miraculously, showed to be
arithmetically meaningful q-power series.
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But showing that, for instance, � was a modular form was hard, and we could only do
it because � was a predictable product of q-s, and not a predictable q-power series.

There is, however, one source of predictable power series in q that has nice functional
equation properties:

Definition 12. The theta series is

✓(z) =
X

n2Z

qn
2
=
X

n2Z

e2⇡in
2z.

When does this converge? (Incidentally, this theta series is useful in showing that the
Riemann zeta function ⇣(s) can be defined for all complex numbers s except 1.)

Lemma 13. For any z: ✓(� 1
4z ) =

q
2z
i ✓(z). (This is a standard computation in Fourier

transforms, one of the simplest applications of the Poisson summation formula.)

Clearly ✓ is NOT a modular form. However:

Proposition 14. ✓4 2 M2(4) is a modular form of weight 2 and level 4.

Proof. First, ✓ is a power series in q and it converges everywhere, so it has all the analytic
properties needed. The only thing to check are the functional equations.

For level 1 modular forms, the infinitely functional equations could be disposed of by
checking only two: for T and S, namely that f(z + 1) = f(z) and f(�1

z ) = z2kf(z). We
checked this because the matrices T and S generated all of SL2(Z). In general, it is still
true that �0(N) is generated by finitely many matrices, but typically many more than 2.

However, it’s still the case that �0(4) is generated by T and A =

✓
1 0
4 1

◆
.

The functional equation for T is just that ✓ (and therefore ✓4) is a power series in q.
What about the functional equation for A? We’d have to check that

✓4(
1

4z + 1
) = (4z + 1)2✓4(z),

which looks so di↵erent from what we know about ✓ that it seems we won’t be able to get
anywhere.

Instead, time for a little playing around, to notice that

A =

✓
1 0
4 1

◆
=

✓
0 �

1
2

2 0

◆✓
1 �1
0 1

◆✓
0 �

1
2

2 0

◆�1

. (3.1)

We already know from the exercise set that if the functional equation is true for some
matrices, it is true for their product (and inverse). So it would be enough to check the

functional equation for the matrix

✓
0 �

1
2

2 0

◆
, which is profoundly weird because it doesn’t
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have integral coe�cients! Nevertheless, the functional equation still makes sense and in fact,
the functional equation is precisely

✓4(
�

1
2

2z
) = ✓4(�

1

4z
) =

 r
2z

i

!4

✓4(z) = �(2z)2✓4(z).

Unfortunately, we are o↵ by a sign. That’s fine, however, because in (3.1), we see this weird
matrix twice, so the two negative signs cancel out!

Application: sums of four squares

This took long, but we can now apply the fact that ✓4 2 M2(4), a vector space of dimension
2 (similar to what we’ve done for level 1), and try to write ✓4 explicitly in terms of Eisenstein
series, similar to what we did in the case of �.

What Eisenstein series? In the case of level 1, we saw that G2 converged only condi-
tionally, and was definitely not a modular form (it didn’t satisfy the functional equation for
S!).

We use a trick that turns out to be extremely important in number theory:

G2,2(z) = G2(z)� 2G2(2z)

G2,4(z) = G2(z)� 4G2(4z)

On the exercise set you will check that G2,2 and G2,4 are in M2(4).
Rescaling by 8⇡2 we get

E2 = �
1

24
+

1X

n=1

�1(n)q
n

E2,2 = �
1

24
+

1X

n=1

�1(n)q
n
�

 
�

2

24
+

1X

n=1

2�1(n)q
2n

!

=
1

24
+

1X

n=1

�1(n)q
n
�

1X

n=1

2�1(n)q
2n =

1

24
+ q + q2 + · · ·

E2,4 = �
1

24
+

1X

n=1

�1(n)q
n
�

 
�

4

24
+

1X

n=1

4�1(n)q
4n

!

=
3

24
+

1X

n=1

�1(n)q
n
�

1X

n=1

4�1(n)q
4n =

3

24
+ q + 3q2 + · · · .

Visibly, E2,2 and E2,4 are not linearly dependent, so they must be a basis of M2(4). We
deduce

✓4 = aE2,2 + bE2,4,
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for some scalars a and b. Playing around with a few coe�cients we get

✓4 = 1 + 8q + 24q2 + · · · = 8E2,4.

At the same time

✓4 =
X

N

r(N)qN = 1 +
X

n

�1(n)q
n
�

X

n

4�1(n)q
4n

so the number r(N) of ways of writing N = x2 + y2 + z2 + t2 is

r(N) =
X

d|N,4-d

d.

Tying back to elliptic curves

On Wednesday’s exercise set, you looked at the elliptic curve

y2 + y = x3
� x.

What are a2, a3, a5? What is the L-function of this elliptic curve? [Show on lmfdb]
A most amazing connection is satisfied between elliptic curves and modular forms:

Theorem 15 (Modularity theorem). If L(E, s) =
P

ann�s is the L-function of an elliptic
curve then f =

P
anqn is a modular forms of weight 2 and some level (which depends on

the elliptic curve).
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