Graduate Algebra
 Homework 2

Fall 2014
Due 2014-09-10 at the beginning of class

1. Show that the dihedral group D_{8} with 8 elements is isomorphic to the subgroup of $\operatorname{GL}(2, \mathbb{R})$ generated by the matrices $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.
2. Let Q be the subgroup of $\operatorname{GL}(2, \mathbb{C})$ generated by the matrices $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$.
(a) Show that Q is a non-abelian group with 8 elements.
(b) Show that Q and D_{8} are not isomorphic.
(c) Show that all the subgroups of Q are normal.
Q is known as the quaternion group.
3. (a) Show that every subgroup of \mathbb{Z} is infinite cyclic.
(b) Show that every finite subgroup of \mathbb{C}^{\times}is of the form $\mu_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$. [Hint: Proof from (a) also works for (b).]
4. Let p be a prime number and G the set of upper triangular 3×3 matrices with 1 -s on the diagonal and entries in $\mathbb{Z} / p \mathbb{Z}$.
(a) Show that G is a group with respect to matrix multiplication, where addition and multiplication in $\mathbb{Z} / p \mathbb{Z}$ are taken modulo p.
(b) Show that $Z(G) \cong \mathbb{Z} / p \mathbb{Z}$.
(c) Show that $G / Z(G) \cong(\mathbb{Z} / p \mathbb{Z}) \times(\mathbb{Z} / p \mathbb{Z})$?
G is known as a Heisenberg group (think entry 12 as position and entry 23 as momentum in quantum mechanics) which is an example of an extraspecial group. Both D_{8} and Q above are extraspecial groups as well.
5. Let $K \subset H$ be two subgroups of a group G. Show that $[G: K]=[G: H][H: K]$.
