Graduate Algebra Homework 2

Fall 2014
Due 2014-09-10 at the beginning of class

1. Show that the dihedral group D_{8} with 8 elements is isomorphic to the subgroup of $\operatorname{GL}(2, \mathbb{R})$ generated by the matrices $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

Proof. First, remark that if G is a group, $a, b \in G$ such that $\left\{a^{k} b^{l}\right\}$ is a group then $\langle a, b\rangle=\left\{a^{k} b^{l}\right\}$. Indeed, $\langle a, b\rangle$ is the smallest group containing a, b and certainly contains $\left\{a^{k} b^{l}\right\}$. Let a be the first matrix and b the second. Then $a^{2}=-I_{2}, b^{2}=I_{2}$ and $a b=-b a$. This implies that $a^{-1}=-a$, $b^{-1}=b$ and so $a^{k} b^{l}\left(a^{m} b^{n}\right)^{-1}=a^{k} b^{l-n} a^{-m}$ is either a^{k-m} or $a^{k} b a^{-m}=(-1)^{m} a^{k-m} b=a^{k+m} b$. Thus $\langle a, b\rangle=\left\{a^{k} b^{l}\right\}$ and this set contains, as $a^{4}=1, b^{2}=1$ only the elements $\left\{1, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}$. The map $a \mapsto R, b \mapsto F$ gives an isomorphism with D_{8}.
2. Let Q be the subgroup of $\operatorname{GL}(2, \mathbb{C})$ generated by the matrices $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$.
(a) Show that Q is a non-abelian group with 8 elements.
(b) Show that Q and D_{8} are not isomorphic.
(c) Show that all the subgroups of Q are normal.
Q is known as the quaternion group.
Proof. (1) As before, a is the first matrix, b is the second. Then $a^{2}=b^{2}=-1$ and $a b=-b a$ so $\left\{a^{k} b^{l}\right\}$ is again a group. It is not abelian and as a set it is $\left\{1, a, a^{2}, a^{3}, b, a b, a^{2} b, a^{3} b\right\}$.
(2): Under a group isomorphism the orders of elements are preserved. But R^{2} and F have order 2 in D_{8} so there must be two elements of order 2 in Q. However, only $a^{2}=b^{2}=-I_{2}$ has order 2 in Q so there cannot be any isomorphism.
(3): Two ways: either list all subgroups and check manually that they are all normal (1, Q are; $\langle a\rangle,\langle b\rangle,\langle a b\rangle$ are normal; $\left\langle a^{2}=b^{2}\right\rangle$ is normal) OR show that every index 2 subgroup must be normal. Since $|Q|=8$ the only remaining case is the unique subgroup $\langle-1\rangle$ of order 2 which is normal because $-1 \in Z(Q)$.
For the first method you really need to check normality by hand: $g H=H g$ for each subgroup H and each $g \in Q$. I won't write it out, but it's not difficult. For the second method, suppose $[G: H]=2$. Then $G=H \sqcup g H$. For each $h \in H$ check $h H=H h$ and $g h H=H g h$. The first one is clear. For the second one need $g H=H g$. Suppose $a g \in H g$ for $a \in H$ but $a g \notin g H$. Then $a g \in H$ and so $g \in H$ which cannot be. Thus $H g \subset g H$. The opposite inclusion is similar and H is normal.
3. (a) Show that every proper subgroup of \mathbb{Z} is infinite cyclic.
(b) Show that every finite subgroup of \mathbb{C}^{\times}is of the form $\mu_{n}=\left\{z \in \mathbb{C} \mid z^{n}=1\right\}$. [Hint: Proof from (a) also works for (b).]

Proof. (1): H proper means there is a nonzero element n of lowest absolute value. Since $\pm n \in H$ assume $n>0$. Let $m \in H$ and write $m=n q+r$ with $0 \leq r<n$. Then $m-n q=r \in H$ and by minimality of $n, r=0$. Thus $H \subset n \mathbb{Z}$. But $n \in H$ and so $H=n \mathbb{Z}$.
(2): Since G is finite, $g^{|G|}=1$ for all $g \in G$ and so $G \subset \mu_{|G|}$. But $\left|\mu_{|G|}\right|=|G|$ and so the inclusion is an equality.
4. Let p be a prime number and G the set of upper triangular 3×3 matrices with 1 -s on the diagonal and entries in $\mathbb{Z} / p \mathbb{Z}$.
(a) Show that G is a group with respect to matrix multiplication, where addition and multiplication in $\mathbb{Z} / p \mathbb{Z}$ are taken modulo p.
(b) Show that $Z(G) \cong \mathbb{Z} / p \mathbb{Z}$.
(c) Show that $G / Z(G) \cong(\mathbb{Z} / p \mathbb{Z}) \times(\mathbb{Z} / p \mathbb{Z})$?
G is known as a Heisenberg group (think entry 12 as position and entry 23 as momentum in quantum mechanics) which is an example of an extraspecial group. Both D_{8} and Q above are extraspecial groups as well.

Proof. Write $(a, c ; b)=\left(\begin{array}{ccc}1 & a & b \\ & 1 & c \\ & & 1\end{array}\right)$.
(1) Since $G \subset \mathrm{GL}(3, \mathbb{Z} / p \mathbb{Z})$ it suffices to check that $(a, c ; b)(x, z ; y)^{-1} \in G$. But $(x, z ; y)^{-1}=(-x,-z ; x z-$ $y)$ and $(a, c ; b)(-x,-z ; x z-y)=(a-x, c-z ; b-c z+x z-y) \in G$.
(2): Suppose $(a, c ; b) \in Z(G)$. Then $(a, c ; b)(x, z ; y)=(x, z ; y)(a, c ; b)$ for all x, y, z. Thus $b+a z+y=$ $y+z c+b$ for all x, y, z and so $a=c=0$. Reciprocally, $(0,0 ; b) \in Z(G)$ which is easy to see. Thus $Z(G) \cong \mathbb{Z} / p \mathbb{Z}$ sending $(0,0 ; b) \mapsto b$, which is clearly an isomorphism.
(3): Need to find representatives of $G /(G)$ in G, by "making $Z(G)$ vanish". Thus we ignore b and get the $\operatorname{map}(a, c ; b) Z(G) \mapsto(a, c) \in(\mathbb{Z} / p \mathbb{Z})^{2}$. This is well defined because $(a, c ; b)(0,0 ; x)=(a, c ; b+x)$ and so a and c don't depend on the element of the coset $(a, c ; b) Z(G)$. Moreover, the map is a homomorphism because $(a, c ; *)(x, z ; *)=(a+x, c+z ; *)$ and this produces the desired isomorphism.
5. Let $K \subset H$ be two subgroups of a group G. Show that $[G: K]=[G: H][H: K]$.

Proof. If $|G|<\infty$ use $[G: K]=|G| /|K|$. If $[G: K]=\infty$ then both sides are ∞. Assume $[G: K]<\infty$. Thus $G=\sqcup g_{i} H$ and $H=\sqcup h_{j} K$. Thus $G=\sqcup g_{i}\left(\sqcup h_{j} K\right)=\sqcup g_{i} h_{j} K$ and the result follows from counting cosets.

