Graduate Algebra Homework 2

Fall 2014

Due 2014-09-10 at the beginning of class

1. Show that the dihedral group D_8 with 8 elements is isomorphic to the subgroup of $\operatorname{GL}(2,\mathbb{R})$ generated by the matrices $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Proof. First, remark that if G is a group, $a, b \in G$ such that $\{a^k b^l\}$ is a group then $\langle a, b \rangle = \{a^k b^l\}$. Indeed, $\langle a, b \rangle$ is the smallest group containing a, b and certainly contains $\{a^k b^l\}$. Let a be the first matrix and b the second. Then $a^2 = -I_2$, $b^2 = I_2$ and ab = -ba. This implies that $a^{-1} = -a$, $b^{-1} = b$ and so $a^k b^l (a^m b^n)^{-1} = a^k b^{l-n} a^{-m}$ is either a^{k-m} or $a^k ba^{-m} = (-1)^m a^{k-m} b = a^{k+m} b$. Thus $\langle a, b \rangle = \{a^k b^l\}$ and this set contains, as $a^4 = 1, b^2 = 1$ only the elements $\{1, a, a^2, a^3, b, ab, a^2 b, a^3 b\}$. The map $a \mapsto R, b \mapsto F$ gives an isomorphism with D_8 .

2. Let Q be the subgroup of $GL(2,\mathbb{C})$ generated by the matrices $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$.

- (a) Show that Q is a non-abelian group with 8 elements.
- (b) Show that Q and D_8 are not isomorphic.
- (c) Show that all the subgroups of Q are normal.

Q is known as the **quaternion group**.

Proof. (1) As before, a is the first matrix, b is the second. Then $a^2 = b^2 = -1$ and ab = -ba so $\{a^k b^l\}$ is again a group. It is not abelian and as a set it is $\{1, a, a^2, a^3, b, ab, a^2b, a^3b\}$.

(2): Under a group isomorphism the orders of elements are preserved. But R^2 and F have order 2 in D_8 so there must be two elements of order 2 in Q. However, only $a^2 = b^2 = -I_2$ has order 2 in Q so there cannot be any isomorphism.

(3): Two ways: either list all subgroups and check manually that they are all normal (1, Q are; $\langle a \rangle, \langle b \rangle, \langle ab \rangle$ are normal; $\langle a^2 = b^2 \rangle$ is normal) OR show that every index 2 subgroup must be normal. Since |Q| = 8 the only remaining case is the unique subgroup $\langle -1 \rangle$ of order 2 which is normal because $-1 \in Z(Q)$.

For the first method you really need to check normality by hand: gH = Hg for each subgroup H and each $g \in Q$. I won't write it out, but it's not difficult. For the second method, suppose [G : H] = 2. Then $G = H \sqcup gH$. For each $h \in H$ check hH = Hh and ghH = Hgh. The first one is clear. For the second one need gH = Hg. Suppose $ag \in Hg$ for $a \in H$ but $ag \notin gH$. Then $ag \in H$ and so $g \in H$ which cannot be. Thus $Hg \subset gH$. The opposite inclusion is similar and H is normal.

- 3. (a) Show that every proper subgroup of \mathbb{Z} is infinite cyclic.
 - (b) Show that every finite subgroup of \mathbb{C}^{\times} is of the form $\mu_n = \{z \in \mathbb{C} | z^n = 1\}$. [Hint: Proof from (a) also works for (b).]

Proof. (1): *H* proper means there is a nonzero element *n* of lowest absolute value. Since $\pm n \in H$ assume n > 0. Let $m \in H$ and write m = nq + r with $0 \leq r < n$. Then $m - nq = r \in H$ and by minimality of n, r = 0. Thus $H \subset n\mathbb{Z}$. But $n \in H$ and so $H = n\mathbb{Z}$.

(2): Since G is finite, $g^{|G|} = 1$ for all $g \in G$ and so $G \subset \mu_{|G|}$. But $|\mu_{|G|}| = |G|$ and so the inclusion is an equality.

- 4. Let p be a prime number and G the set of upper triangular 3×3 matrices with 1-s on the diagonal and entries in $\mathbb{Z}/p\mathbb{Z}$.
 - (a) Show that G is a group with respect to matrix multiplication, where addition and multiplication in $\mathbb{Z}/p\mathbb{Z}$ are taken modulo p.
 - (b) Show that $Z(G) \cong \mathbb{Z}/p\mathbb{Z}$.
 - (c) Show that $G/Z(G) \cong (\mathbb{Z}/p\mathbb{Z}) \times (\mathbb{Z}/p\mathbb{Z})$?

G is known as a **Heisenberg group** (think entry 12 as position and entry 23 as momentum in quantum mechanics) which is an example of an **extraspecial group**. Both D_8 and Q above are extraspecial groups as well.

Proof. Write
$$(a, c; b) = \begin{pmatrix} 1 & a & b \\ & 1 & c \\ & & 1 \end{pmatrix}$$
.

(1) Since $G \subset GL(3, \mathbb{Z}/p\mathbb{Z})$ it suffices to check that $(a, c; b)(x, z; y)^{-1} \in G$. But $(x, z; y)^{-1} = (-x, -z; xz - y)$ and $(a, c; b)(-x, -z; xz - y) = (a - x, c - z; b - cz + xz - y) \in G$.

(2): Suppose $(a, c; b) \in Z(G)$. Then (a, c; b)(x, z; y) = (x, z; y)(a, c; b) for all x, y, z. Thus b + az + y = y + zc + b for all x, y, z and so a = c = 0. Reciprocally, $(0, 0; b) \in Z(G)$ which is easy to see. Thus $Z(G) \cong \mathbb{Z}/p\mathbb{Z}$ sending $(0, 0; b) \mapsto b$, which is clearly an isomorphism.

(3): Need to find representatives of G/(G) in G, by "making Z(G) vanish". Thus we ignore b and get the map $(a,c;b)Z(G) \mapsto (a,c) \in (\mathbb{Z}/p\mathbb{Z})^2$. This is well defined because (a,c;b)(0,0;x) = (a,c;b+x) and so a and c don't depend on the element of the coset (a,c;b)Z(G). Moreover, the map is a homomorphism because (a,c;*)(x,z;*) = (a+x,c+z;*) and this produces the desired isomorphism. \Box

5. Let $K \subset H$ be two subgroups of a group G. Show that [G:K] = [G:H][H:K].

Proof. If $|G| < \infty$ use [G:K] = |G|/|K|. If $[G:K] = \infty$ then both sides are ∞ . Assume $[G:K] < \infty$. Thus $G = \sqcup g_i H$ and $H = \sqcup h_j K$. Thus $G = \sqcup g_i (\sqcup h_j K) = \sqcup g_i h_j K$ and the result follows from counting cosets.