Graduate Algebra Homework 3

Fall 2014

Due 2014-09-17 at the beginning of class

- 1. (a) Show that $\operatorname{Aut}(\mathbb{Q}) \cong \mathbb{Q}^{\times}$.
 - (b) Show that $\operatorname{Aut}(\mathbb{R}) \supseteq \mathbb{R}^{\times}$. [Hint: Take a suitable \mathbb{Q} -vector space projection from \mathbb{R} to \mathbb{Q} .]
 - (c) (Extra credit) Find all groups G such that $Aut(G) = \{id\}$. [This is a fun exercise.]

2. Let p be a prime number. Consider $G = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a \in (\mathbb{Z}/p\mathbb{Z})^{\times}, b \in \mathbb{Z}/p\mathbb{Z} \}.$

- (a) Show that G is a group.
- (b) Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and define $H_a = \{ \begin{pmatrix} a^k & b \\ 0 & 1 \end{pmatrix} | b \in \mathbb{Z}/p\mathbb{Z}, k \in \mathbb{Z} \}$. Show that H_a is a normal subgroup of G.
- (c) Show that every proper normal subgroup of G is of the form H_a for some a. [Hint: You will need to use that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a cyclic group.]
- (d) Show that $G \cong \mathbb{Z}/p\mathbb{Z} \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$ given by the identity map $(\mathbb{Z}/p\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$.

We'll study this group later as the **Galois group** of the polynomial $X^p - 2$.

- 3. Let G be a finite group and let H be a subgroup of G. Denote by S_H the group of permutations of the finite set G/H.
 - (a) Show that if $g \in H$ then the map $f_g : G/H \to G/H$ defined by $f_g(xH) = gxH$ is an element of S_H .
 - (b) Show that $G \to S_H$ given by $g \mapsto f_g$ is a group homomorphism with kernel ker f contained in H.
 - (c) Suppose that [G : H] = p is the smallest prime divisor of |G|. Show that $|G/\ker f| = p$ and deduce that H is normal in G. [This is a generalization of the standard result that every index 2 subgroup is normal.]
- 4. Let G be an abelian group. Suppose $g, h \in G$ have finite orders m and n. Show that $(gh) \mid [m, n]$, the least common multiple of m and n.
- 5. Let G be a group such that G/Z(G) is cyclic. Show that G is abelian. Does the same conclusion hold if G/Z(G) is only assumed to be abelian?