1. (a) Show that \(\text{Aut}(\mathbb{Q}) \cong \mathbb{Q}^\times \).
(b) Show that \(\text{Aut}(\mathbb{R}) \supseteq \mathbb{R}^\times \). [Hint: Take a suitable \(\mathbb{Q} \)-vector space projection from \(\mathbb{R} \) to \(\mathbb{Q} \).]
(c) (Extra credit) Find all groups \(G \) such that \(\text{Aut}(G) = \{ \text{id} \} \). [This is a fun exercise.]

2. Let \(p \) be a prime number. Consider \(G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \mid a \in (\mathbb{Z}/p\mathbb{Z})^\times, b \in \mathbb{Z}/p\mathbb{Z} \right\} \).

 (a) Show that \(G \) is a group.

 (b) Let \(a \in (\mathbb{Z}/p\mathbb{Z})^\times \) and define \(H_a = \left\{ \begin{pmatrix} a^k & b \\ 0 & 1 \end{pmatrix} \mid b \in \mathbb{Z}/p\mathbb{Z}, k \in \mathbb{Z} \right\} \). Show that \(H_a \) is a normal subgroup of \(G \).

 (c) Show that every proper normal subgroup of \(G \) is of the form \(H_a \) for some \(a \). [Hint: You will need to use that \((\mathbb{Z}/p\mathbb{Z})^\times\) is a cyclic group.]

 (d) Show that \(G \cong \mathbb{Z}/p\mathbb{Z} \times (\mathbb{Z}/p\mathbb{Z})^\times \) given by the identity map \((\mathbb{Z}/p\mathbb{Z})^\times \to \text{Aut}(\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p\mathbb{Z})^\times\).

 We'll study this group later as the Galois group of the polynomial \(X^p - 2 \).

3. Let \(G \) be a finite group and let \(H \) be a subgroup of \(G \). Denote by \(S_H \) the group of permutations of the finite set \(G/H \).

 (a) Show that if \(g \in H \) then the map \(f_g : G/H \to G/H \) defined by \(f_g(xH) = gxH \) is an element of \(S_H \).

 (b) Show that \(G \to S_H \) given by \(g \to f_g \) is a group homomorphism with kernel \(\ker f \) contained in \(H \).

 (c) Suppose that \(|G : H| = p \) is the smallest prime divisor of \(|G| \). Show that \(|G/\ker f| = p \) and deduce that \(H \) is normal in \(G \). [This is a generalization of the standard result that every index 2 subgroup is normal.]

4. Let \(G \) be an abelian group. Suppose \(g, h \in G \) have finite orders \(m \) and \(n \). Show that \((gh) \mid [m, n] \), the least common multiple of \(m \) and \(n \).

5. Let \(G \) be a group such that \(G/Z(G) \) is cyclic. Show that \(G \) is abelian. Does the same conclusion hold if \(G/Z(G) \) is only assumed to be abelian?