Graduate Algebra Homework 3 Solutions

Fall 2014

Due 2014-09-17 at the beginning of class

- 1. (a) Show that $\operatorname{Aut}(\mathbb{Q}) \cong \mathbb{Q}^{\times}$.
 - (b) Show that $\operatorname{Aut}(\mathbb{R}) \supseteq \mathbb{R}^{\times}$. [Hint: Take a suitable \mathbb{Q} -vector space projection from \mathbb{R} to \mathbb{Q} .]
 - (c) (Extra credit) Find all groups G such that $Aut(G) = \{id\}$. [This is a fun exercise.]

Proof. (a): If $f \in \operatorname{Aut}(\mathbb{Q})$ then f(nx) = nf(x) for all x. In particular f(n) = nf(1) and f(m) = nf(m/n) so $f(m/n) = f(1) \cdot m/n$. Thus all automorphisms are given by multiplication by f(1) and this is invertible iff $f(1) \neq 0$.

(b): Again $\mathbb{R}^{\times} \subset \operatorname{Aut}(\mathbb{R})$ because if $r \neq 0$ then f(x) = rx is an automorphism. How to get more automorphisms? \mathbb{R} is a vector space over \mathbb{Q} so fix some basis $\mathcal{B} = \{a, b, c, \ldots\}$ (uncountable, but choose a, b, c basis vectors). Every $r \in \mathbb{R}$ is a finite linear combination of basis vectors with \mathbb{Q} -coefficients. So $r = r_a a + r_b b + r_c c + \cdots$. Consider $f(r) = r_b a + r_a b + r_c c + \cdots$ (swap the coefficients of a and b). Then this is a homomorphism of groups (coefficients are additive since every linear combination of basis vectors is unique). But f(c) = c so if f were multiplication by a real number it would have to be the identity map. However f(a) = b so f is not multiplication by any real number.

(c): $\operatorname{Inn}(G) = 1$ so $gxg^{-1} = x$ for all g, x so G is abelian. Since G is abelian, $x \mapsto x^{-1}$ is a homomorphism so $x^{-1} = x$ for all x, thus $x^2 = 1$ for all x. This implies that G is a vector space over \mathbb{F}_2 , scalar multiplication being given by $c \cdot x = x^c$, which is well-defined since $x^2 = 1$. Let \mathcal{B} be a basis of G over \mathbb{F}_2 . If dim $\mathcal{B} > 1$, the "swapping of coefficients" argument from (b) shows that there exists a nontrivial automorphism. Thus dim $\mathcal{B} \leq 1$ and so G = 1 or $G = \mathbb{Z}/2\mathbb{Z}$. Both have trivial automorphism groups.

2. Let p be a prime number. Consider $G = \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} | a \in (\mathbb{Z}/p\mathbb{Z})^{\times}, b \in \mathbb{Z}/p\mathbb{Z} \}.$

- (a) Show that G is a group.
- (b) Let $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ and define $H_a = \{ \begin{pmatrix} a^k & b \\ 0 & 1 \end{pmatrix} | b \in \mathbb{Z}/p\mathbb{Z}, k \in \mathbb{Z} \}$. Show that H_a is a normal subgroup of G.
- (c) Show that every proper normal subgroup of G is of the form H_a for some a. [Hint: You will need to use that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is a cyclic group.]
- (d) Show that $G \cong \mathbb{Z}/p\mathbb{Z} \rtimes (\mathbb{Z}/p\mathbb{Z})^{\times}$ given by the identity map $(\mathbb{Z}/p\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$.

We'll study this group later as the **Galois group** of the polynomial $X^p - 2$.

Proof. Write $(a,b) = \begin{pmatrix} a & b \\ & 1 \end{pmatrix}$. (a) Clearly (a,b)(c,d) = (ac,ad+b) and $(a,b)^{-1} = (a^{-1},-a^{-1}b)$. Thus G is a group.

(b) Check $(x, y)(a^k, b)(x, y)^{-1} = (xa^k, xb+y)(x^{-1}, -x^{-1}y) = (a^k, (1-a^k)y+xb) \in H_a$ so H_a is normal. (c) Consider $G \to (\mathbb{Z}/p\mathbb{Z})^{\times}$ sending (a, b) to a. This is a group homomorphism (from the multiplication formulae). Thus if H is a subgroup of G the image of H under this map is also a subgroup of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. But this group is cyclic and all subgroups of cyclic groups are cyclic (already proved this when you showed that finite subgroups of \mathbb{C} are groups of roots of unity) it follows that for some $a \in (\mathbb{Z}/p\mathbb{Z})^{\times}$, the image of H is $\langle a \rangle$. Thus for each k there exists some b such that $(a^k, b) \in H$. Since H is normal, for all $(x, y) \in G$ we need $(x, y)(a^k, b)(x, y)^{-1} \in H$. Thus $(a^k, (1-a^k)y+xb) \in H$ for all x, y. If $a^k \neq 1$ it follows that $(a^k, c) \in H$ for all c. Finally, $(a^k, x)(a^{-k}, 0) = (1, x)$ so $H_a \subset H$. If $H \neq H_a$ then H must have some element (x, y) with $x \notin \langle a \rangle$ contradicting the choice of a.

(d): $N = H_1$ is normal and $H = \{(x, 0)\}$ is a disjoint subgroup such that G = NH. Thus $G \cong N \rtimes H$ with $H \mapsto \operatorname{Aut}(N)$ given by $h \mapsto (n \mapsto hnh^{-1})$. $N \cong \mathbb{Z}/p\mathbb{Z}$ identifying (1, b) with b and $H \cong (\mathbb{Z}/p\mathbb{Z})^{\times}$ identifying (x, 0) with x. What is $\phi : H \to \operatorname{Aut}(N)$ under these isomorphisms? $\phi_h(n) = hnh^{-1}$ so $\phi_x(b)$ can be read from $(x, 0)(1, b)(x^{-1}, 0) = (1, bx)$ thus $\phi_x(b) = bx$ and so $\phi : (\mathbb{Z}/p\mathbb{Z})^{\times} \to \operatorname{Aut}(\mathbb{Z}/p\mathbb{Z})$ sends x to multiplication by x.

- 3. Let G be a finite group and let H be a subgroup of G. Denote by S_H the group of permutations of the finite set G/H.
 - (a) Show that if $g \in H$ then the map $f_g : G/H \to G/H$ defined by $f_g(xH) = gxH$ is an element of S_H .
 - (b) Show that $G \to S_H$ given by $g \mapsto f_g$ is a group homomorphism with kernel ker f contained in H.
 - (c) Suppose that [G : H] = p is the smallest prime divisor of |G|. Show that $|G/\ker f| = p$ and deduce that H is normal in G. [This is a generalization of the standard result that every index 2 subgroup is normal.]

Proof. (a): If $f_g(xH) = f_g(yH)$ then gxH = gyH so xH = yH so f_g is a permutation of G/H.

(b): If $g, h \in G$, $f_g \circ f_h = f_{gh}$ so $f : G \to S_H$ is a group homomorphism. If $g \in \ker f$ then $f_g = \operatorname{id}$ so $f_g(H) = H$. Thus gH = H so $g \in H$ and we deduce $\ker f \subset H$.

(c): $G/\ker f \cong \operatorname{Im} f$ which is a subgroup of S_H . By Lagrange $|G/\ker f| \mid |S_H| = p!$. But $|G/\ker f| \mid |G|$ so $|G/\ker f| \mid (p!, |G|) = p$. Thus $\ker f \subset H \subset G$ with $[G:H] = [G:\ker f]$ so $H = \ker f$ which is then normal in G.

4. Let G be an abelian group. Suppose $g, h \in G$ have finite orders m and n. Show that $\operatorname{ord}(gh) \mid [m, n]$, the least common multiple of m and n.

Proof. $(gh)^{[m,n]} = g^{[m,n]}h^{[m,n]} = 1$ since $m, n \mid [m,n]$.

5. Let G be a group such that G/Z(G) is cyclic. Show that G is abelian. Does the same conclusion hold if G/Z(G) is only assumed to be abelian?

Proof. Suppose $G/Z(G) = \langle gZ(G) \rangle = \{ (gZ(G))^k \} = \{ g^k Z(G) \}$. Then $G = \sqcup g^k Z(G)$. Now $g^i u g^j v = g^{i+j} uv = g^j v g^i u$ since $u, v \in Z(G)$. Thus G is cyclic.

From homework 2 the Heisenberg group is nonabelian with G/Z(G) abelian not cyclic.