Graduate Algebra
 Homework 3 Solutions

Fall 2014
Due 2014-09-17 at the beginning of class

1. (a) Show that $\operatorname{Aut}(\mathbb{Q}) \cong \mathbb{Q}^{\times}$.
(b) Show that $\operatorname{Aut}(\mathbb{R}) \supsetneq \mathbb{R}^{\times}$. [Hint: Take a suitable \mathbb{Q}-vector space projection from \mathbb{R} to \mathbb{Q}.]
(c) (Extra credit) Find all groups G such that $\operatorname{Aut}(G)=\{i d\}$. [This is a fun exercise.]

Proof. (a): If $f \in \operatorname{Aut}(\mathbb{Q})$ then $f(n x)=n f(x)$ for all x. In particular $f(n)=n f(1)$ and $f(m)=$ $n f(m / n)$ so $f(m / n)=f(1) \cdot m / n$. Thus all automorphisms are given by multiplication by $f(1)$ and this is invertible iff $f(1) \neq 0$.
(b): Again $\mathbb{R}^{\times} \subset \operatorname{Aut}(\mathbb{R})$ because if $r \neq 0$ then $f(x)=r x$ is an automorphism. How to get more automorphisms? \mathbb{R} is a vector space over \mathbb{Q} so fix some basis $\mathcal{B}=\{a, b, c, \ldots\}$ (uncountable, but choose a, b, c basis vectors). Every $r \in \mathbb{R}$ is a finite linear combination of basis vectors with \mathbb{Q}-coefficients. So $r=r_{a} a+r_{b} b+r_{c} c+\cdots$. Consider $f(r)=r_{b} a+r_{a} b+r_{c} c+\cdots$ (swap the coefficients of a and $b)$. Then this is a homomorphism of groups (coefficients are additive since every linear combination of basis vectors is unique). But $f(c)=c$ so if f were multiplication by a real number it would have to be the identity map. However $f(a)=b$ so f is not multiplication by any real number.
(c): $\operatorname{Inn}(G)=1$ so $g x g^{-1}=x$ for all g, x so G is abelian. Since G is abelian, $x \mapsto x^{-1}$ is a homomorphism so $x^{-1}=x$ for all x, thus $x^{2}=1$ for all x. This implies that G is a vector space over \mathbb{F}_{2}, scalar multiplication being given by $c \cdot x=x^{c}$, which is well-defined since $x^{2}=1$. Let \mathcal{B} be a basis of G over \mathbb{F}_{2}. If $\operatorname{dim} \mathcal{B}>1$, the "swapping of coefficients" argument from (b) shows that there exists a nontrivial automorphism. Thus $\operatorname{dim} \mathcal{B} \leq 1$ and so $G=1$ or $G=\mathbb{Z} / 2 \mathbb{Z}$. Both have trivial automorphism groups.
2. Let p be a prime number. Consider $G=\left\{\left.\left(\begin{array}{ll}a & b \\ 0 & 1\end{array}\right) \right\rvert\, a \in(\mathbb{Z} / p \mathbb{Z})^{\times}, b \in \mathbb{Z} / p \mathbb{Z}\right\}$.
(a) Show that G is a group.
(b) Let $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$and define $H_{a}=\left\{\left.\left(\begin{array}{cc}a^{k} & b \\ 0 & 1\end{array}\right) \right\rvert\, b \in \mathbb{Z} / p \mathbb{Z}, k \in \mathbb{Z}\right\}$. Show that H_{a} is a normal subgroup of G.
(c) Show that every proper normal subgroup of G is of the form H_{a} for some a. [Hint: You will need to use that $(\mathbb{Z} / p \mathbb{Z})^{\times}$is a cyclic group.]
(d) Show that $G \cong \mathbb{Z} / p \mathbb{Z} \rtimes(\mathbb{Z} / p \mathbb{Z})^{\times}$given by the identity map $(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \operatorname{Aut}(\mathbb{Z} / p \mathbb{Z}) \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$.

We'll study this group later as the Galois group of the polynomial $X^{p}-2$.
Proof. Write $(a, b)=\left(\begin{array}{ll}a & b \\ & 1\end{array}\right)$. (a) Clearly $(a, b)(c, d)=(a c, a d+b)$ and $(a, b)^{-1}=\left(a^{-1},-a^{-1} b\right)$. Thus G is a group.
(b) Check $(x, y)\left(a^{k}, b\right)(x, y)^{-1}=\left(x a^{k}, x b+y\right)\left(x^{-1},-x^{-1} y\right)=\left(a^{k},\left(1-a^{k}\right) y+x b\right) \in H_{a}$ so H_{a} is normal.
(c) Consider $G \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\times}$sending (a, b) to a. This is a group homomorphism (from the multiplication formulae). Thus if H is a subgroup of G the image of H under this map is also a subgroup of $(\mathbb{Z} / p \mathbb{Z})^{\times}$. But this group is cyclic and all subgroups of cyclic groups are cyclic (already proved this when you showed that finite subgroups of \mathbb{C} are groups of roots of unity) it follows that for some $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, the image of H is $\langle a\rangle$. Thus for each k there exists some b such that $\left(a^{k}, b\right) \in H$. Since H is normal, for all $(x, y) \in G$ we need $(x, y)\left(a^{k}, b\right)(x, y)^{-1} \in H$. Thus $\left(a^{k},\left(1-a^{k}\right) y+x b\right) \in H$ for all x, y. If $a^{k} \neq 1$ it follows that $\left(a^{k}, c\right) \in H$ for all c. Finally, $\left(a^{k}, x\right)\left(a^{-k}, 0\right)=(1, x)$ so $H_{a} \subset H$. If $H \neq H_{a}$ then H must have some element (x, y) with $x \notin\langle a\rangle$ contradicting the choice of a.
(d): $N=H_{1}$ is normal and $H=\{(x, 0)\}$ is a disjoint subgroup such that $G=N H$. Thus $G \cong N \rtimes H$ with $H \mapsto \operatorname{Aut}(N)$ given by $h \mapsto\left(n \mapsto h n h^{-1}\right)$. $N \cong \mathbb{Z} / p \mathbb{Z}$ identifying $(1, b)$ with b and $H \cong(\mathbb{Z} / p \mathbb{Z})^{\times}$ identifying $(x, 0)$ with x. What is $\phi: H \rightarrow \operatorname{Aut}(N)$ under these isomorphisms? $\phi_{h}(n)=h n h^{-1}$ so $\phi_{x}(b)$ can be read from $(x, 0)(1, b)\left(x^{-1}, 0\right)=(1, b x)$ thus $\phi_{x}(b)=b x$ and so $\phi:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow \operatorname{Aut}(\mathbb{Z} / p \mathbb{Z})$ sends x to multiplication by x.
3. Let G be a finite group and let H be a subgroup of G. Denote by S_{H} the group of permutations of the finite set G / H.
(a) Show that if $g \in H$ then the map $f_{g}: G / H \rightarrow G / H$ defined by $f_{g}(x H)=g x H$ is an element of S_{H}.
(b) Show that $G \rightarrow S_{H}$ given by $g \mapsto f_{g}$ is a group homomorphism with kernel ker f contained in H.
(c) Suppose that $[G: H]=p$ is the smallest prime divisor of $|G|$. Show that $|G / \operatorname{ker} f|=p$ and deduce that H is normal in G. [This is a generalization of the standard result that every index 2 subgroup is normal.]

Proof. (a): If $f_{g}(x H)=f_{g}(y H)$ then $g x H=g y H$ so $x H=y H$ so f_{g} is a permutation of G / H.
(b): If $g, h \in G, f_{g} \circ f_{h}=f_{g h}$ so $f: G \rightarrow S_{H}$ is a group homomorphism. If $g \in \operatorname{ker} f$ then $f_{g}=$ id so $f_{g}(H)=H$. Thus $g H=H$ so $g \in H$ and we deduce ker $f \subset H$.
(c): $G / \operatorname{ker} f \cong \operatorname{Im} f$ which is a subgroup of S_{H}. By Lagrange $|G / \operatorname{ker} f|\left|\left|S_{H}\right|=p\right.$!. But $| G / \operatorname{ker} f| ||G|$ so $|G / \operatorname{ker} f| \mid(p!,|G|)=p$. Thus $\operatorname{ker} f \subset H \subset G$ with $[G: H]=[G: \operatorname{ker} f]$ so $H=\operatorname{ker} f$ which is then normal in G.
4. Let G be an abelian group. Suppose $g, h \in G$ have finite orders m and n. Show that ord $(g h) \mid[m, n]$, the least common multiple of m and n.

Proof. $(g h)^{[m, n]}=g^{[m, n]} h^{[m, n]}=1$ since $m, n \mid[m, n]$.
5. Let G be a group such that $G / Z(G)$ is cyclic. Show that G is abelian. Does the same conclusion hold if $G / Z(G)$ is only assumed to be abelian?

Proof. Suppose $G / Z(G)=\langle g Z(G)\rangle=\left\{(g Z(G))^{k}\right\}=\left\{g^{k} Z(G)\right\}$. Then $G=\sqcup g^{k} Z(G)$. Now $g^{i} u g^{j} v=$ $g^{i+j} u v=g^{j} v g^{i} u$ since $u, v \in Z(G)$. Thus G is cyclic.
From homework 2 the Heisenberg group is nonabelian with $G / Z(G)$ abelian not cyclic.

