Graduate Algebra
 Homework 4

Fall 2014
Due 2014-09-24 at the beginning of class

1. Recall the quaternion group from homework 2 .
(a) Show that Q has the following presentation: $Q \cong\left\langle i, j \mid i^{2}=j^{2}=(i j)^{2}\right\rangle$.
(b) Deduce that $|\operatorname{Aut}(Q)|=24$. [Hint: Make a list of the orders of the elements of Q.]
2. Let G be the group $\left\langle\left(\begin{array}{ll}2 & \\ & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ & 1\end{array}\right)\right\rangle \subset \mathrm{GL}(2, \mathbb{R})$. Show that the subgroup of matrices with 1-s on the diagonal is not finitely generated.
3. Suppose A and B are two groups and $f: Z_{1} \rightarrow Z_{2}$ is an isomorphism between the subgroups $Z_{1} \subset Z(A)$ and $Z_{2} \subset Z(B)$.
(a) Show that $Z=\left\{\left(x, f(x)^{-1}\right) \in A \times B \mid x \in Z\right\}$ is a normal subgroup of $A \times B$. The quotient $A *_{f} B=A \times B / Z$ is called the central product of A and B with respect to f.
(b) Show that $A \rightarrow A *_{f} B$ given by $a \mapsto(a, 1) Z$ and $B \rightarrow A *_{f} B$ given by $b \mapsto(1, b) Z$ are injective homomorphisms giving $A \cap B$ as a subgroup of $A *_{f} B$ isomorphic to Z.
(c) Let H be the Heisenberg group from homework 2. Consider the identity map $Z(H) \rightarrow Z(H)$. Show that the central product $H *_{\mathrm{id}} H$ is isomorphic to the group of matrices

$$
\left\{\left.\left(\begin{array}{cccc}
1 & a_{1} & a_{2} & b \\
& 1 & & c_{1} \\
& & 1 & c_{2} \\
& & & 1
\end{array}\right) \right\rvert\, a_{1}, a_{2}, b, c_{1}, c_{2} \in \mathbb{Z} / p \mathbb{Z}\right\}
$$

This central product is again a Heisenberg group (think position and momentum of two particles).
4. For a matrix $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{R})$ and $z \in \mathbb{C}$ define, if possible, $g \cdot z=\frac{a z+b}{c z+d}$.
(a) Show that $\operatorname{Im}(g \cdot z)=\frac{\operatorname{det}(g) \operatorname{Im}(z)}{|c z+d|^{2}}$.
(b) Show that the subgroup $\mathrm{GL}(2, \mathbb{R})^{+}$of matrices with positive determinant acts on $\mathcal{H}=\{z \in$ $\mathbb{C} \mid \operatorname{Im} z>0\}$ via $g \mapsto(z \mapsto g \cdot z)$.
(c) Show that this action is transitive, i.e., all of \mathcal{H} is one orbit, and compute $\operatorname{Stab}(i)$ and $\operatorname{Stab}\left(\zeta_{3}\right)$.
5. Let $\mathrm{GL}(2, \mathbb{Z})$ consist of 2×2 matrices with entries in \mathbb{Z} and determinant ± 1.
(a) Show that $\mathrm{GL}(2, \mathbb{Z})$ is a group and that it acts on \mathbb{Z}^{2} by matrix multiplication.
(b) Show that the set $S=\left\{\left.\binom{d}{0} \right\rvert\, d \in \mathbb{Z}_{\geq 1}\right\}$ parametrizes the orbits of $\mathrm{GL}(2, \mathbb{Z})$ acting on \mathbb{Z}^{2}, i.e., in each orbit there is a unique element from the set S and this provides a bijection between the orbits and the set S. [Hint: Show that the orbit of $\binom{d}{0}$ consists of $\binom{a}{b}$ with $(a, b)=d$.]

