Graduate Algebra Homework 4

Fall 2014

Due 2014-09-24 at the beginning of class

1. Recall the quaternion group from homework 2.

- (a) Show that Q has the following presentation: $Q \cong \langle i, j | i^2 = j^2 = (ij)^2 \rangle$.
- (b) Deduce that $|\operatorname{Aut}(Q)| = 24$. [Hint: Make a list of the orders of the elements of Q.]

Proof. (a): If $i^2 = j^2 = ijij$ then j = iji and, squaring, $j^2 = iji^2ji = ij^4i = i^6$ so $i^4 = 1$ and similarly $j^4 = (ij)^4 = 1$. Since jij = i we get $ji = ij^3$ so every word in $T = \langle i, j | i^2 = j^2 = (ij)^2 \rangle$ is of the form $i^k j^r$. Using $i^4 = j^4 = 1$ we deduce that as a set $T \subset \{1, i, i^2, i^3, j, ij, i^2j, i^3j\}$. These are all distinct because the order of i is 4 and $j \notin \langle i \rangle$ (e.g., because i and j do not commute). Thus T has order 8.

Write $I = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $J = \begin{pmatrix} i \\ i \end{pmatrix}$. Then $JI = IJ^3$ and so $i \mapsto I$ and $j \mapsto J$ gives a homomorphism $T \to Q$. It is an isomorphism because it is injective between two sets of order 8.

(b): Let $\phi \in \operatorname{Aut}(Q) = \operatorname{Aut}(T)$. Then $\phi(i)$ and $\phi(j)$ have order 4 and $\phi(j) \notin \langle \phi(i) \rangle$. For ease of exposition, write $i^2 = j^2 = (ij)^2 = -1 \in Z(Q)$ and k = ij. Then $Q = \{\pm 1, \pm i, \pm j, \pm k\}$. Thus $\phi(i) \in \{\pm i, \pm j, \pm k\}$ (6 choices) and $\phi(j)$ must be in the same set and $\neq \pm \phi(i)$ (4 choices). Thus $|\operatorname{Aut}(Q)| \leq 24$. It remains to show that each such choice yields an automorphism of Q.

Note that $i^2 = j^2 = k^2 = (ij)^2 = (ki)^2 = (jk)^2$ and that i = jk and j = ki. Thus, relabelling, $Q \cong \langle j, k | j^2 = k^2 = (jk)^2 \rangle \cong \langle k, i | k^2 = i^2 = (ki)^2 \rangle$ as in each case we get the same set using the same formulae. This implies that any of the 6 choices sending i, j to i, j, k will produce an automorphism.

Also note that if we write I = -i then $I^2 = j^2 = (jI)^2$ and we recover i = -I and k = jI so $Q \cong \langle j, I | i^2 = I^2 = (jI)^2 \rangle$ simply relabelling the generators. Thus $i \mapsto -i$ and $j \mapsto j$ yields an automorphism of Q.

Finally, note that every one of the 24 choices sending i, j to $\pm i, \pm j, \pm k$ is a composition of the two types of automorphisms described above. For $\sigma \in S_{\{i,j,k\}}$ write ϕ_{σ} for the automorphism sending i, j, k to $\sigma(i), \sigma(j), \sigma(k)$ and write τ for the automorphism $i \mapsto -i$ and $j \mapsto j$. Then $i \mapsto -\sigma(i)$ and $j \mapsto \sigma(j)$ is $\phi_{\sigma} \circ \tau; i \mapsto \sigma(i)$ and $j \mapsto -\sigma(j)$ is $\phi_{(ij)} \circ \phi_{\sigma} \circ \tau \circ \phi_{(ij)}$; finally $i \mapsto -\sigma(i)$ and $j \mapsto -\sigma(j)$ is a composition of the previous two automorphisms.

2. Let G be the group $\begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 \end{pmatrix} \rangle \subset GL(2, \mathbb{R})$. Show that the subgroup of matrices with 1-s on the diagonal is not finitely generated.

Proof. Note that

$$\begin{pmatrix} 1 & 2^{-n} \\ & 1 \end{pmatrix} = \begin{pmatrix} 2 & \\ & 1 \end{pmatrix}^{-n} \begin{pmatrix} 1 & 1 \\ & 1 \end{pmatrix} \begin{pmatrix} 2 & \\ & 1 \end{pmatrix}^n \in G$$

Consider the map $G \to \mathbb{Q}$ given by $\begin{pmatrix} 1 & x \\ & 1 \end{pmatrix} \mapsto x$ (it's \mathbb{Q} because the matrices have rational entries and $\operatorname{GL}(2,\mathbb{Q})$ is a group). It is an injective homomorphism of groups sending G to a subgroup of \mathbb{Q} which contains, by the above, 2^{-n} for all n. Suppose G is finitely generated. Then its image in \mathbb{Q} is, say generated by $\frac{m_1}{n_1}, \ldots, \frac{m_k}{n_k}$. But then G inside Q is a subset of $\{\sum d_i \frac{m_i}{n_i} | d_i \in \mathbb{Z}\} \subset \{\frac{k}{[n_1,\ldots,n_k]} | k \in \mathbb{Z}\}$ and this does not contain 2^{-N} if $2^N > [n_1,\ldots,n_k]$.

- 3. Suppose A and B are two groups and $f: Z_1 \to Z_2$ is an isomorphism between the subgroups $Z_1 \subset Z(A)$ and $Z_2 \subset Z(B)$.
 - (a) Show that $Z = \{(x, f(x)^{-1}) \in A \times B | x \in Z\}$ is a normal subgroup of $A \times B$. The quotient $A *_f B = A \times B/Z$ is called the **central product** of A and B with respect to f.
 - (b) Show that $A \to A *_f B$ given by $a \mapsto (a, 1)Z$ and $B \to A *_f B$ given by $b \mapsto (1, b)Z$ are injective homomorphisms giving $A \cap B$ as a subgroup of $A *_f B$ isomorphic to Z.
 - (c) Let H be the Heisenberg group from homework 2. Consider the identity map $Z(H) \to Z(H)$. Show that the central product $H *_{id} H$ is isomorphic to the group of matrices

$$\left\{ \begin{pmatrix} 1 & a_1 & a_2 & b \\ 1 & & c_1 \\ & & 1 & c_2 \\ & & & 1 \end{pmatrix} | a_1, a_2, b, c_1, c_2 \in \mathbb{Z}/p\mathbb{Z} \right\}$$

This central product is again a Heisenberg group (think position and momentum of two particles).

Proof. (a): Need to show that if $(a, b) \in A \times B$ and $(x, f(x)^{-1}) \in Z$ then $(a, b)(x, f(x)^{-1})(a^{-1}, b^{-1}) \in Z$. But this is $(axa^{-1}, bf(x)^{-1}b^{-1}) = (x, f(x)^{-1})$ since $x \in Z(A)$ and $f(x) \in Z(B)$.

(b): If (a, 1)Z = Z then $(a, 1) = (x, f(x)^{-1})$ for some $x \in Z_1$. But then f(x) = 1 so x = 1 since f is an isomorphism. Thus $a \mapsto (a, 1)Z$ is injective. Identically $b \mapsto (1, b)Z$ is injective. What is $A \cap B$? An element in the intersection is (a, 1)Z in A equal to some (1, b)Z in B. But (a, 1)Z = (1, b)Z iff $(a, 1)^{-1}(1, b) \in Z$ iff $(a^{-1}, b) \in Z$ iff $(a^{-1}, b) = (x, f(x)^{-1})$ for some $x \in Z_1$ iff $a = x^{-1}$ and $b = f(x)^{-1} = f(a)$ and so the intersection consists of (x, 1)Z = (1, f(x))Z for $x \in Z_1$ which means that it is $\cong Z$.

(c): Write (a, c; b) as in the solution to the Heisenberg group problem from homework 2. Write $(a_1, a_2, c_1, c_2; b)$ for the matrix in this problem. Given a group G, what is G * G with respect to the identity map on Z(G)? It is pairs $(g, h) \in G \times G$ up to the equivalence (gz, h) = (g, hz) for $z \in Z(G)$. Consider the map $\phi : (a_1, a_2, c_1, c_2; b) \mapsto (a_1, c_1; b) * (a_2, c_2; 0)$. I claim this is an isomorphism. Indeed,

 $(a_1, a_2, c_1, c_2; b)(a'_1, a'_2, c'_1, c'_2; b') = (a_1 + a'_1, a_2 + a'_2, c_1 + c'_1, c_2 + c'_2; b + b' + a_1c'_1 + a_2c'_2)$. For ϕ to be a homomorphism we need to check that

$$((a_1, c_1; b) * (a_2, c_2; 0))((a'_1, c'_1; b') * (a'_2, c'_2; 0)) = (a_1 + a'_1, c_1 + c'_1; b + b' + a_1c'_1 + a_2c'_2) * (a_2 + a'_2, c_2 + c'_2; 0)$$

and, multiplying out the LHS, this becomes

$$(a_1+a_1',c_1+c_1';b+b'+a_1c_1')*(a_2+a_2',c_2+c_2';a_2c_2') = (a_1+a_1',c_1+c_1';b+b'+a_1c_1'+a_2c_2')*(a_2+a_2',c_2+c_2';0) = (a_1+a_1',c_1+c_1';b+b'+a_1c_1'+a_2c_2')*(a_2+a_2',c_2+c_2';a_2c_2') = (a_1+a_1',c_1+c_1';b+b'+a_1c_1'+a_2c_2')*(a_2+a_2',c_2+c_2';0) = (a_1+a_1',c_1+c_1';b+b'+a_1c_1'+a_2c_2')*(a_2+a_2',c_2+c_2';0) = (a_1+a_1',c_1+c_1';b+b'+a_1c_1'+a_2c_2')*(a_2+a_2',c_2+c_2';0) = (a_1+a_1',c_1+c_1';b+b'+a_1c_1'+a_2c_2')*(a_2+a_2',c_2+c_2';0) = (a_2+a_2',c_2+c_2';0) = (a_2+a_2',c_2+c_2+c_2)$$

and this is immediate from (gz, h) = (g, hz) as $(0, 0; a_2c'_2)$ is in the center of the Heisenberg group.

It remains to check that ϕ is a bijection. Note that (a, c; b) * (a', c'; b') = (a, c; b + b') * (a', c'; 0)in the central product (as above, since (0, 0; b') is in the center) so the map is surjective. Suppose (a, c; b) * (a', c'; 0) is trivial. Then $(a, c; b) \times (a', c'; 0) \in \mathbb{Z}$ so (a, c; b) and (a', c'; 0) are in the center of H and their product is 1. In other words a = a' = c = c' = 0 and -b = 0. Thus ϕ is also injective. \Box 4. For a matrix $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}(2, \mathbb{R})$ and $z \in \mathbb{C}$ define, if possible, $g \cdot z = \frac{az+b}{cz+d}$

- (a) Show that $\operatorname{Im}(g \cdot z) = \frac{\det(g)\operatorname{Im}(z)}{|cz+d|^2}$.
- (b) Show that the subgroup $\operatorname{GL}(2,\mathbb{R})^+$ of matrices with positive determinant acts on $\mathcal{H} = \{z \in \mathbb{C} | \operatorname{Im} z > 0\}$ via $g \mapsto (z \mapsto g \cdot z)$.
- (c) Show that this action is transitive, i.e., all of \mathcal{H} is one orbit, and compute $\operatorname{Stab}(i)$ and $\operatorname{Stab}(\zeta_3)$.

Proof. (a)

$$\operatorname{Im} g \cdot z = (2i)^{-1} (g \cdot z + \overline{g \cdot \overline{z}})$$
$$= (2i)^{-1} (\frac{az+b}{cz+d} + \frac{a\overline{z}+b}{c\overline{z}+d})$$
$$= (2i)^{-1} \frac{(ad-bc)(z-\overline{z})}{(cz+d)(c\overline{z}+d)}$$
$$= \frac{\det g \operatorname{Im} z}{|cz+d|^2}$$

(b): If det g > 0 and Im z > 0 then by (a) Im $g \cdot z > 0$ so $\operatorname{GL}(2, \mathbb{R})^+$ preserves \mathcal{H} . Need to check action, i.e., that $(gh) \cdot z = g \cdot (h \cdot z)$. But

$$\begin{pmatrix} m & n \\ p & q \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z \end{pmatrix} = \frac{m\frac{az+b}{cz+d}+n}{p\frac{az+b}{cz+d}+q} = \frac{(am+cn)z+mb+dn}{(ap+cq)z+bp+dq} = \begin{pmatrix} m & n \\ p & q \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z$$

(c): If z = x + iy then

$$z = \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} \cdot i$$

and $\operatorname{Im} z = \det \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} > 0$. Thus every z is in the orbit of i. What about the stabilizers. We seek $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ such that $\frac{ai+b}{ci+d} = i$, i.e., a = d and c = -b so $\operatorname{Stab}(i) = \{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \}$. We now seek a, b, c, d such that $\frac{a\zeta_3 + b}{c\zeta_3 + d} = \zeta_3$ which multiplies out to $a\zeta_3 + b = c\zeta_3^2 + d\zeta_3 = -c + (d-c)\zeta_3$. Thus a = d - c and b = -c so $\operatorname{Stab}(\zeta_3) = \{ \begin{pmatrix} a & b \\ -b & a - b \end{pmatrix} \}$.

- 5. Let $GL(2,\mathbb{Z})$ consist of 2×2 matrices with entries in \mathbb{Z} and determinant ± 1 .
 - (a) Show that $GL(2,\mathbb{Z})$ is a group and that it acts on \mathbb{Z}^2 by matrix multiplication.
 - (b) Show that the set $S = \{ \begin{pmatrix} d \\ 0 \end{pmatrix} | d \in \mathbb{Z}_{\geq 1} \}$ parametrizes the orbits of $\operatorname{GL}(2, \mathbb{Z})$ acting on \mathbb{Z}^2 , i.e., in each orbit there is a unique element from the set S and this provides a bijection between the orbits and the set S. [Hint: Show that the orbit of $\begin{pmatrix} d \\ 0 \end{pmatrix}$ consists of $\begin{pmatrix} a \\ b \end{pmatrix}$ with (a, b) = d.]

Proof. (a): Note that $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = (ad - bc)^{-1} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ so $\operatorname{GL}(2, \mathbb{Z})$ is a group since $ad - bc = \pm 1$. [In fact $\operatorname{GL}(n, \mathbb{Z})$ is a group as $A^{-1} = (\det A)^{-1}A^*$ where A^* has entries equal to determinants of minors of A, thus integers. Since $\det A = \pm 1$ we deduce that $\operatorname{GL}(n, \mathbb{Z})$ is a group.] (b): Suppose (a, b) = d so a = a'd and b = b'd with (a', b') = 1. Then there exist integers p, q such that a'p + b'q = 1. Let $g = \begin{pmatrix} p & q \\ -b' & -a' \end{pmatrix}$. Then $g \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix}$ and $\det g = 1$. Thus $\begin{pmatrix} a \\ b \end{pmatrix}$ is in the orbit of $\begin{pmatrix} d \\ 0 \end{pmatrix}$. Reciprocally, suppose $\begin{pmatrix} p & q \\ r & s \end{pmatrix} \cdot \begin{pmatrix} d \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$. Then pd = a and rd = b and so $d \mid a, b$. But (p, r) = 1 because if an integer divides the first column of the matrix then it divides the determinant, which is ± 1 .

In fact there is a typo in the statement of the problem. The zero vector $\begin{pmatrix} 0\\0 \end{pmatrix}$ is also an arbit. \Box