Graduate Algebra Homework 4

Fall 2014
Due 2014-09-24 at the beginning of class

1. Recall the quaternion group from homework 2 .
(a) Show that Q has the following presentation: $Q \cong\left\langle i, j \mid i^{2}=j^{2}=(i j)^{2}\right\rangle$.
(b) Deduce that $|\operatorname{Aut}(Q)|=24$. [Hint: Make a list of the orders of the elements of Q.]

Proof. (a): If $i^{2}=j^{2}=i j i j$ then $j=i j i$ and, squaring, $j^{2}=i j i^{2} j i=i j^{4} i=i^{6}$ so $i^{4}=1$ and similarly $j^{4}=(i j)^{4}=1$. Since $j i j=i$ we get $j i=i j^{3}$ so every word in $T=\left\langle i, j \mid i^{2}=j^{2}=(i j)^{2}\right\rangle$ is of the form $i^{k} j^{r}$. Using $i^{4}=j^{4}=1$ we deduce that as a set $T \subset\left\{1, i, i^{2}, i^{3}, j, i j, i^{2} j, i^{3} j\right\}$. These are all distinct because the order of i is 4 and $j \notin\langle i\rangle$ (e.g., because i and j do not commute). Thus T has order 8 .
Write $I=\left(\begin{array}{cc} & 1 \\ -1 & \end{array}\right)$ and $J=\left(\begin{array}{ll}i & i \\ i & \end{array}\right)$. Then $J I=I J^{3}$ and so $i \mapsto I$ and $j \mapsto J$ gives a homomorphism $T \rightarrow Q$. It is an isomorphism because it is injective between two sets of order 8.
(b): Let $\phi \in \operatorname{Aut}(Q)=\operatorname{Aut}(T)$. Then $\phi(i)$ and $\phi(j)$ have order 4 and $\phi(j) \notin\langle\phi(i)\rangle$. For ease of exposition, write $i^{2}=j^{2}=(i j)^{2}=-1 \in Z(Q)$ and $k=i j$. Then $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$. Thus $\phi(i) \in\{ \pm i, \pm j, \pm k\}$ (6 choices) and $\phi(j)$ must be in the same set and $\neq \pm \phi(i)$ (4 choices). Thus $|\operatorname{Aut}(Q)| \leq 24$. It remains to show that each such choice yields an automorphism of Q.
Note that $i^{2}=j^{2}=k^{2}=(i j)^{2}=(k i)^{2}=(j k)^{2}$ and that $i=j k$ and $j=k i$. Thus, relabelling, $Q \cong\left\langle j, k \mid j^{2}=k^{2}=(j k)^{2}\right\rangle \cong\left\langle k, i \mid k^{2}=i^{2}=(k i)^{2}\right\rangle$ as in each case we get the same set using the same formulae. This implies that any of the 6 choices sending i, j to i, j, k will produce an automorphism.
Also note that if we write $I=-i$ then $I^{2}=j^{2}=(j I)^{2}$ and we recover $i=-I$ and $k=j I$ so $Q \cong\left\langle j, I \mid i^{2}=I^{2}=(j I)^{2}\right\rangle$ simply relabelling the generators. Thus $i \mapsto-i$ and $j \mapsto j$ yields an automorphism of Q.
Finally, note that every one of the 24 choices sending i, j to $\pm i, \pm j, \pm k$ is a composition of the two types of automorphisms described above. For $\sigma \in S_{\{i, j, k\}}$ write ϕ_{σ} for the automorphism sending i, j, k to $\sigma(i), \sigma(j), \sigma(k)$ and write τ for the automorphism $i \mapsto-i$ and $j \mapsto j$. Then $i \mapsto-\sigma(i)$ and $j \mapsto \sigma(j)$ is $\phi_{\sigma} \circ \tau ; i \mapsto \sigma(i)$ and $j \mapsto-\sigma(j)$ is $\phi_{(i j)} \circ \phi_{\sigma} \circ \tau \circ \phi_{(i j)}$; finally $i \mapsto-\sigma(i)$ and $j \mapsto-\sigma(j)$ is a composition of the previous two automorphisms.
2. Let G be the group $\left\langle\left(\begin{array}{ll}2 & \\ & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ & 1\end{array}\right)\right\rangle \subset \mathrm{GL}(2, \mathbb{R})$. Show that the subgroup of matrices with 1-s on the diagonal is not finitely generated.

Proof. Note that

$$
\left(\begin{array}{cc}
1 & 2^{-n} \\
& 1
\end{array}\right)=\left(\begin{array}{ll}
2 & \\
& 1
\end{array}\right)^{-n}\left(\begin{array}{ll}
1 & 1 \\
& 1
\end{array}\right)\left(\begin{array}{ll}
2 & \\
& 1
\end{array}\right)^{n} \in G
$$

Consider the map $G \rightarrow \mathbb{Q}$ given by $\left(\begin{array}{ll}1 & x \\ & 1\end{array}\right) \mapsto x$ (it's \mathbb{Q} because the matrices have rational entries and $\operatorname{GL}(2, \mathbb{Q})$ is a group). It is an injective homomorphism of groups sending G to a subgroup of \mathbb{Q} which contains, by the above, 2^{-n} for all n. Suppose G is finitely generated. Then its image in \mathbb{Q} is, say generated by $\frac{m_{1}}{n_{1}}, \ldots, \frac{m_{k}}{n_{k}}$. But then G inside Q is a subset of $\left\{\left.\sum d_{i} \frac{m_{i}}{n_{i}} \right\rvert\, d_{i} \in \mathbb{Z}\right\} \subset\left\{\left.\frac{k}{\left[n_{1}, \ldots, n_{k}\right]} \right\rvert\, k \in \mathbb{Z}\right\}$ and this does not contain 2^{-N} if $2^{N}>\left[n_{1}, \ldots, n_{k}\right]$.
3. Suppose A and B are two groups and $f: Z_{1} \rightarrow Z_{2}$ is an isomorphism between the subgroups $Z_{1} \subset Z(A)$ and $Z_{2} \subset Z(B)$.
(a) Show that $Z=\left\{\left(x, f(x)^{-1}\right) \in A \times B \mid x \in Z\right\}$ is a normal subgroup of $A \times B$. The quotient $A *_{f} B=A \times B / Z$ is called the central product of A and B with respect to f.
(b) Show that $A \rightarrow A *_{f} B$ given by $a \mapsto(a, 1) Z$ and $B \rightarrow A *_{f} B$ given by $b \mapsto(1, b) Z$ are injective homomorphisms giving $A \cap B$ as a subgroup of $A *_{f} B$ isomorphic to Z.
(c) Let H be the Heisenberg group from homework 2. Consider the identity map $Z(H) \rightarrow Z(H)$. Show that the central product $H *_{\mathrm{id}} H$ is isomorphic to the group of matrices

$$
\left\{\left.\left(\begin{array}{cccc}
1 & a_{1} & a_{2} & b \\
& 1 & & c_{1} \\
& & 1 & c_{2} \\
& & & 1
\end{array}\right) \right\rvert\, a_{1}, a_{2}, b, c_{1}, c_{2} \in \mathbb{Z} / p \mathbb{Z}\right\}
$$

This central product is again a Heisenberg group (think position and momentum of two particles).
Proof. (a): Need to show that if $(a, b) \in A \times B$ and $\left(x, f(x)^{-1}\right) \in Z$ then $(a, b)\left(x, f(x)^{-1}\right)\left(a^{-1}, b^{-1}\right) \in Z$. But this is $\left(a x a^{-1}, b f(x)^{-1} b^{-1}\right)=\left(x, f(x)^{-1}\right)$ since $x \in Z(A)$ and $f(x) \in Z(B)$.
(b): If $(a, 1) Z=Z$ then $(a, 1)=\left(x, f(x)^{-1}\right)$ for some $x \in Z_{1}$. But then $f(x)=1$ so $x=1$ since f is an isomorphism. Thus $a \mapsto(a, 1) Z$ is injective. Identically $b \mapsto(1, b) Z$ is injective. What is $A \cap B$? An element in the intersection is $(a, 1) Z$ in A equal to some $(1, b) Z$ in B. But $(a, 1) Z=(1, b) Z$ iff $(a, 1)^{-1}(1, b) \in Z$ iff $\left(a^{-1}, b\right) \in Z$ iff $\left(a^{-1}, b\right)=\left(x, f(x)^{-1}\right)$ for some $x \in Z_{1}$ iff $a=x^{-1}$ and $b=f(x)^{-1}=f(a)$ and so the intersection consists of $(x, 1) Z=(1, f(x)) Z$ for $x \in Z_{1}$ which means that it is $\cong Z$.
(c): Write $(a, c ; b)$ as in the solution to the Heisenberg group problem from homework 2. Write $\left(a_{1}, a_{2}, c_{1}, c_{2} ; b\right)$ for the matrix in this problem. Given a group G, what is $G * G$ with respect to the identity map on $Z(G)$? It is pairs $(g, h) \in G \times G$ up to the equivalence $(g z, h)=(g, h z)$ for $z \in Z(G)$.
Consider the map $\phi:\left(a_{1}, a_{2}, c_{1}, c_{2} ; b\right) \mapsto\left(a_{1}, c_{1} ; b\right) *\left(a_{2}, c_{2} ; 0\right)$. I claim this is an isomorphism. Indeed, $\left(a_{1}, a_{2}, c_{1}, c_{2} ; b\right)\left(a_{1}^{\prime}, a_{2}^{\prime}, c_{1}^{\prime}, c_{2}^{\prime} ; b^{\prime}\right)=\left(a_{1}+a_{1}^{\prime}, a_{2}+a_{2}^{\prime}, c_{1}+c_{1}^{\prime}, c_{2}+c_{2}^{\prime} ; b+b^{\prime}+a_{1} c_{1}^{\prime}+a_{2} c_{2}^{\prime}\right)$. For ϕ to be a homomorphism we need to check that
$\left(\left(a_{1}, c_{1} ; b\right) *\left(a_{2}, c_{2} ; 0\right)\right)\left(\left(a_{1}^{\prime}, c_{1}^{\prime} ; b^{\prime}\right) *\left(a_{2}^{\prime}, c_{2}^{\prime} ; 0\right)\right)=\left(a_{1}+a_{1}^{\prime}, c_{1}+c_{1}^{\prime} ; b+b^{\prime}+a_{1} c_{1}^{\prime}+a_{2} c_{2}^{\prime}\right) *\left(a_{2}+a_{2}^{\prime}, c_{2}+c_{2}^{\prime} ; 0\right)$
and, multiplying out the LHS, this becomes
$\left(a_{1}+a_{1}^{\prime}, c_{1}+c_{1}^{\prime} ; b+b^{\prime}+a_{1} c_{1}^{\prime}\right) *\left(a_{2}+a_{2}^{\prime}, c_{2}+c_{2}^{\prime} ; a_{2} c_{2}^{\prime}\right)=\left(a_{1}+a_{1}^{\prime}, c_{1}+c_{1}^{\prime} ; b+b^{\prime}+a_{1} c_{1}^{\prime}+a_{2} c_{2}^{\prime}\right) *\left(a_{2}+a_{2}^{\prime}, c_{2}+c_{2}^{\prime} ; 0\right)$
and this is immediate from $(g z, h)=(g, h z)$ as $\left(0,0 ; a_{2} c_{2}^{\prime}\right)$ is in the center of the Heisenberg group.
It remains to check that ϕ is a bijection. Note that $(a, c ; b) *\left(a^{\prime}, c^{\prime} ; b^{\prime}\right)=\left(a, c ; b+b^{\prime}\right) *\left(a^{\prime}, c^{\prime} ; 0\right)$ in the central product (as above, since $\left(0,0 ; b^{\prime}\right)$ is in the center) so the map is surjective. Suppose $(a, c ; b) *\left(a^{\prime}, c^{\prime} ; 0\right)$ is trivial. Then $(a, c ; b) \times\left(a^{\prime}, c^{\prime} ; 0\right) \in Z$ so $(a, c ; b)$ and $\left(a^{\prime}, c^{\prime} ; 0\right)$ are in the center of H and their product is 1 . In other words $a=a^{\prime}=c=c^{\prime}=0$ and $-b=0$. Thus ϕ is also injective.
4. For a matrix $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}(2, \mathbb{R})$ and $z \in \mathbb{C}$ define, if possible, $g \cdot z=\frac{a z+b}{c z+d}$.
(a) Show that $\operatorname{Im}(g \cdot z)=\frac{\operatorname{det}(g) \operatorname{Im}(z)}{|c z+d|^{2}}$.
(b) Show that the subgroup $\mathrm{GL}(2, \mathbb{R})^{+}$of matrices with positive determinant acts on $\mathcal{H}=\{z \in$ $\mathbb{C} \mid \operatorname{Im} z>0\}$ via $g \mapsto(z \mapsto g \cdot z)$.
(c) Show that this action is transitive, i.e., all of \mathcal{H} is one orbit, and compute $\operatorname{Stab}(i)$ and $\operatorname{Stab}\left(\zeta_{3}\right)$.

Proof. (a)

$$
\begin{aligned}
\operatorname{Im} g \cdot z & =(2 i)^{-1}(g \cdot z+\overline{g \cdot z}) \\
& =(2 i)^{-1}\left(\frac{a z+b}{c z+d}+\frac{a \bar{z}+b}{c \bar{z}+d}\right) \\
& =(2 i)^{-1} \frac{(a d-b c)(z-\bar{z})}{(c z+d)(c \bar{z}+d)} \\
& =\frac{\operatorname{det} g \operatorname{Im} z}{|c z+d|^{2}}
\end{aligned}
$$

(b): If $\operatorname{det} g>0$ and $\operatorname{Im} z>0$ then by (a) $\operatorname{Im} g \cdot z>0$ so $G L(2, \mathbb{R})^{+}$preserves \mathcal{H}. Need to check action, i.e., that $(g h) \cdot z=g \cdot(h \cdot z)$. But

$$
\left(\begin{array}{cc}
m & n \\
p & q
\end{array}\right) \cdot\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z\right)=\frac{m \frac{a z+b}{c z+d}+n}{p \frac{a z+b}{c z+d}+q}=\frac{(a m+c n) z+m b+d n}{(a p+c q) z+b p+d q}=\left(\begin{array}{cc}
m & n \\
p & q
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot z
$$

(c): If $z=x+i y$ then

$$
z=\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right) \cdot i
$$

and $\operatorname{Im} z=\operatorname{det}\left(\begin{array}{ll}y & x \\ 0 & 1\end{array}\right)>0$. Thus every z is in the orbit of i.
What about the stabilizers. We seek $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ such that $\frac{a i+b}{c i+d}=i$, i.e., $a=d$ and $c=-b$ so $\operatorname{Stab}(i)=$ $\left\{\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\right\}$. We now seek a, b, c, d such that $\frac{a \zeta_{3}+b}{c \zeta_{3}+d}=\zeta_{3}$ which multiplies out to $a \zeta_{3}+b=c \zeta_{3}^{2}+d \zeta_{3}=$ $-c+(d-c) \zeta_{3}$. Thus $a=d-c$ and $b=-c$ so $\operatorname{Stab}\left(\zeta_{3}\right)=\left\{\left(\begin{array}{cc}a & b \\ -b & a-b\end{array}\right)\right\}$.
5. Let $\mathrm{GL}(2, \mathbb{Z})$ consist of 2×2 matrices with entries in \mathbb{Z} and determinant ± 1.
(a) Show that $\mathrm{GL}(2, \mathbb{Z})$ is a group and that it acts on \mathbb{Z}^{2} by matrix multiplication.
(b) Show that the set $S=\left\{\left.\binom{d}{0} \right\rvert\, d \in \mathbb{Z}_{\geq 1}\right\}$ parametrizes the orbits of $\operatorname{GL}(2, \mathbb{Z})$ acting on \mathbb{Z}^{2}, i.e., in each orbit there is a unique element from the set S and this provides a bijection between the orbits and the set S. [Hint: Show that the orbit of $\binom{d}{0}$ consists of $\binom{a}{b}$ with $\left.(a, b)=d.\right]$

Proof. (a): Note that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{-1}=(a d-b c)^{-1}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$ so $\operatorname{GL}(2, \mathbb{Z})$ is a group since $a d-b c= \pm 1$. [In fact $\operatorname{GL}(n, \mathbb{Z})$ is a group as $A^{-1}=(\operatorname{det} A)^{-1} A^{*}$ where A^{*} has entries equal to determinants of minors of A, thus integers. Since $\operatorname{det} A= \pm 1$ we deduce that $\mathrm{GL}(n, \mathbb{Z})$ is a group.]
(b): Suppose $(a, b)=d$ so $a=a^{\prime} d$ and $b=b^{\prime} d$ with $\left(a^{\prime}, b^{\prime}\right)=1$. Then there exist integers p, q such that $a^{\prime} p+b^{\prime} q=1$. Let $g=\left(\begin{array}{cc}p & q \\ -b^{\prime} & -a^{\prime}\end{array}\right)$. Then $g \cdot\binom{a}{b}=\binom{d}{0}$ and $\operatorname{det} g=1$. Thus $\binom{a}{b}$ is in the orbit of $\binom{d}{0}$. Reciprocally, suppose $\left(\begin{array}{ll}p & q \\ r & s\end{array}\right) \cdot\binom{d}{0}=\binom{a}{b}$. Then $p d=a$ and $r d=b$ and so $d \mid a, b$. But $(p, r)=1$ because if an integer divides the first column of the matrix then it divides the determinant, which is ± 1.
In fact there is a typo in the statement of the problem. The zero vector $\binom{0}{0}$ is also an arbit.

