Graduate Algebra Homework 5

Fall 2014

Due 2014-10-01 at the beginning of class

1. Let $n \geq 5$.

- (a) Show that the only proper normal subgroup of S_n is A_n .
- (b) Let H be a proper subgroup of S_n . Show that either $H = A_n$ or $[S_n : H] \ge n$. [Hint: Consider the action of S_n on S_n/H .]

Proof. (a): If $H \triangleleft S_n$ then $H \cap A_n \triangleleft A_n$ so is either 1 or A_n . If $H = A_n$ and H is proper then $H = A_n$. If $H \cap A_n = 1$ then H contains some odd permutation $\sigma \in H \cap S_n - A_n$. Thus $S_n = HA_n$ and by the second isomorphism theorem $|S_n| = |HA_n| = |H||A_n|/|H \cap A_n| = |H||A_n|$ and so |H| = 2 which means that $H = \langle (ij) \rangle$ for some transposition. But this is not normal.

(b): As in class get a homomorphism $f: S_n \to S_{S_n/H}$ with kernel contained in H. This kernel is normal in S_n so is either A_n or 1. If A_n then H contains A_n and so $H = A_n$. Otherwise S injects into $S_{S_n/H}$ and so $n! = |S_n| \leq [S_n:H]! = |S_{S_n/H}|$ so $[S_n:H] \geq n$. \Box

2. Let G be a finite group and N the intersection of all p-Sylow subgroups of G. Show that N is a normal p-subgroup of G and that every normal p-subgroup of G is contained in N.

Proof. Let $P \in \text{Syl}_p(G)$ in which case $N = \cap gPg^{-1}$. Thus $xNx^{-1} = \cap xgP(xg)^{-1} = \cap gPg^{-1} = N$ so N is normal. Suppose H is a normal p group. Then $H \subset P$ for some p-Sylow P. But then $gHg^{-1} = H \subset gPg^{-1}$ for all g so $H \subset \cap gPg^{-1} = N$.

- 3. Let $2 be two primes such that <math>p \mid q+1$. Let G be a group with $|G| = p^2 q^2$.
 - (a) Show that there is a normal q-Sylow subgroup Q of G. [Hint: Show that $q \nmid p^2 1$.]
 - (b) Let P be a p-Sylow subgroup. Show that $G \cong Q \rtimes P$.
 - (c) If Q is cyclic show that G is abelian.
 - (d) List all isomorphism classes of abelian groups of order p^2q^2 with $p \neq q$.

There are nonabelian G of the form $(\mathbb{Z}/q\mathbb{Z})^2 \rtimes (\mathbb{Z}/p\mathbb{Z})^2$, at least two nonisomorphic such semidirect products. Cf. http://www.icm.tu-bs.de/ag_algebra/software/small/number.html

Proof. (a): $n_q \equiv 1 \pmod{q}$ and $n_q \mid p^2$. Since p < q we have $n_q \neq p$. If $n_q = p^2$ then $q \mid p^2 - 1$ so either $q \mid p - 1$ or $q \mid p + 1$. The first case is not possible as q > p and the second case is only possible if q = p + 1 but that cannot be as p > 2 and both p and q are prime. Thus $n_q = 1$ as desired.

(b): $P \cap Q = 1$ as the two orders are coprime. Also PQ is a subgroup as Q is normal and has order $|PQ| = |P||Q|/|P \cap Q| = p^2q^2 = |G|$ so G = PQ which implies that $G \cong Q \rtimes P$.

(c): If Q is cyclic then $G \cong Q \rtimes_f P$ for some homomorphism $f : P \to \operatorname{Aut}(Q) \cong \operatorname{Aut}(\mathbb{Z}/q^2\mathbb{Z}) \cong (\mathbb{Z}/q^2\mathbb{Z})^{\times} \cong \mathbb{Z}/q(q-1)\mathbb{Z}$. But $|\operatorname{Im} f|$ divides $|P| = p^2$ and $|\operatorname{Aut}(Q)| = q(q-1)$ and so $|\operatorname{Im} f|$

 $(p^2, q(q-1)) = 1$ as $p \nmid q-1$ since $p \mid q+1$ but $p \neq 2$. Thus f is trivial and $G \cong P \times Q$. Since P and Q have prime square order they are abelian so G is abelian.

(d): Write $p^2q^2 = \prod n_i$ with $n_r \mid n_{r-1} \mid \ldots \mid n_1$ so only 4 possibilities $p^2q^2 = p^2q^2 = p^2q \cdot q = pq^2 \cdot p = pq \cdot pq$ giving $\mathbb{Z}/(pq)^2$, $\mathbb{Z}/p^2q \times \mathbb{Z}/q$, $\mathbb{Z}/pq^2 \times \mathbb{Z}/p$ and $(\mathbb{Z}/pq)^2$.

- 4. Let G be a finite group of order 231.
 - (a) Show that G has normal 7-Sylow and 11-Sylow subgroups.
 - (b) Show that for groups A, B, C, $(A \rtimes_f B) \times C \cong (A \times C) \rtimes_{f \times id} B$ where $f \times id : B \to Aut(A) \times Aut(C) \subset Aut(A \times C)$ sends everything to the trivial automorphism of C.
 - (c) Show that the unique 11-Sylow subgroup of G is contained in Z(G). [Hint: Use part (b) to express the 11-Sylow subgroup as a direct factor of G.]

Proof. (a): $n_7 \mid 33$ and is $\equiv 1 \pmod{7}$ so $n_7 = 1$; $n_{11} \mid 21$ and is $\equiv 1 \mod{11}$ so $n_{11} = 1$.

(b): Consider $\phi: (A \rtimes_f B) \times C \to (A \times C) \rtimes_{f \times id} B$ given by $\phi(a, b, c) = (a, c, b)$. Note that

$$\phi((a, b, c) \cdot_f (a', b', c')) = \phi(af_b(a'), bb', cc')$$

= $(af_b(a'), cc', bb')$
= $((a, c)(f \times id)_b(a', c'), bb')$
= $(a, c, b) \cdot_{f \times id} (a', c', b')$
= $\phi(a, b, c) \cdot_{f \times id} \phi(a', b', c')$

so ϕ is a homomorphism which is visibly an isomorphism.

(c): Let P, Q, R be Sylow 3, 7 and 11 subgroups. Here Q and R are normal so $QR \cong Q \times R \cong \mathbb{Z}/77\mathbb{Z}$ is also normal in G and intersects trivially with P (coprime orders) so PQR = G (comparing orders) and thus $G \cong (Q \times R) \rtimes P$. Here the semidirect product is for a homomorphism $\phi : P \to \operatorname{Aut}(Q \times R) \cong \operatorname{Aut}(Q) \times \operatorname{Aut}(R)$ (since Q and R have coprime orders). Thus $\phi(x) = (f(x), g(x))$ where $f(x) \in \operatorname{Aut}(Q)$ and $g(x) \in \operatorname{Aut}(R)$. But $\operatorname{ord}(g(x)) \mid (|P|, |\operatorname{Aut}(R)|) = (3, 10) = 1$ so g(x) = 1 for all x so $\phi = f \times \operatorname{id}$. By part (b) we deduce that $G \cong (Q \times R) \rtimes P \cong (Q \rtimes P) \times R \cong (\mathbb{Z}/7\mathbb{Z} \rtimes \mathbb{Z}/3\mathbb{Z}) \times \mathbb{Z}/11\mathbb{Z}$.

Finally, R is abelian and commutes with everything in the direct product $G \cong (Q \rtimes P) \times R$ so $R \subset Z(G)$.

- 5. Let \mathbb{F}_q be a finite field with q elements and V an n-dimensional vector space over \mathbb{F}_q .
 - (a) Show that $GL(n, \mathbb{F}_q)$, the group of $n \times n$ matrices with coefficients in \mathbb{F}_q and nonzero determinant, acts **simply transitively** on the set of all possible bases of V. Here transitive means that there is one single orbit (for any x, y there exists g such that gx = y) and simple means that if gx = x for some x then g = 1.
 - (b) Deduce that

$$|\operatorname{GL}(n, \mathbb{F}_q)| = (q^n - 1)(q^n - q)(q^n - q^2) \cdots (q^n - q^{n-1})$$

This formula is useful in random algorithms where it computes the probability that a random matrix is invertible.

Proof. (a): Fix a basis e_1, \ldots, e_m for \mathbb{F}_q^n . Then $\operatorname{GL}(n, \mathbb{F}_q) \cong \operatorname{Aut}_{\mathbb{F}_q-vs}(\mathbb{F}_q^n)$ and a vector space homomorphism is an isomorphism if and only if the span of $\phi(e_1), \ldots, \phi(e_n)$ is also a basis. Thus the image of (e_i) under any invertible matrix is a basis and every basis $v_i = \sum a_{ij}e_j$ is the image of (e_i) under the necessarily invertible matrix (e_{ij}) . Since matrix multiplication is associative this implies that $\operatorname{GL}(n)$ acts simply transitively on the set of bases.

(b): The action being simply transitive it follows that the size of the unique orbit (the number of bases) equals the index of the trivial stabilizer inside the group, thus $|\operatorname{GL}(n, \mathbb{F}_q)|$. Thus we only need to count the number of bases. For v_1 we can choose any of the nonzero vectors in \mathbb{F}_q^n . For v_2 we choose any vector in \mathbb{F}_q^n not in the span of v_1 , etc. Thus the number of bases is $q^n - 1$ choices for $v_1, q^n - q$ choices for v_2 , etc so we get the desired formula.