Graduate Algebra
Homework 5

Fall 2014
Due 2014-10-01 at the beginning of class

1. Let n > 5.

(a) Show that the only proper normal subgroup of S,, is A,,.

(b) Let H be a proper subgroup of S,,. Show that either H = A,, or [S,, : H|] > n. [Hint: Consider
the action of S,, on S, /H.]

Proof. (a): If H<1S,, then HN A, < A, so is either 1 or A,. If H = A,, and H is proper then H = A,,.
If HN A, = 1 then H contains some odd permutation ¢ € HN S, — A,. Thus S,, = HA,, and by
the second isomorphism theorem |S,| = |HA,| = |H||A,|/|H N A,| = |H||A,| and so |H| = 2 which
means that H = ((ij)) for some transposition. But this is not normal.

(b): As in class get a homomorphism f : S, — Sg ,/u with kernel contained in H. This kernel is

normal in S, so is either A, or 1. If A, then H contains A,, and so H = A,,. Otherwise S injects into
Sg,/m and so n! = [S,| < [S, : H]! = |Sg, /u| so [Syp : H] > n. O

2. Let G be a finite group and NNV the intersection of all p-Sylow subgroups of G. Show that IV is a normal
p-subgroup of G and that every normal p-subgroup of G is contained in N.

Proof. Let P € Syl,(G) in which case N = NgPg~'. Thus eNz~' = NzgP(zg)~' = NgPg~' = N
so N is normal. Suppose H is a normal p group. Then H C P for some p-Sylow P. But then
gHg ' = H c gPg~! for all g so H C NgPg~—!' = N. O

3. Let 2 < p < ¢ be two primes such that p | ¢ + 1. Let G be a group with |G| = p?¢>.
(a
(b

(c
(d

Show that there is a normal ¢g-Sylow subgroup @ of G. [Hint: Show that ¢ {p? — 1]
Let P be a p-Sylow subgroup. Show that G = @ x P.
If @ is cyclic show that G is abelian.

D I

List all isomorphism classes of abelian groups of order p?¢? with p # q.

There are nonabelian G of the form (Z/qZ)? x (Z/pZ)?, at least two nonisomorphic such semidirect
products. Cf. http://www.icm.tu-bs.de/ag algebra/software/small/number.html

Proof. (a): ng =1 (mod ¢) and n, | p®. Since p < q we have n, # p. If n, = p? then ¢ | p> — 1 so
either ¢ | p—1 or ¢ | p+ 1. The first case is not possible as ¢ > p and the second case is only possible
if ¢ = p+ 1 but that cannot be as p > 2 and both p and ¢ are prime. Thus n, = 1 as desired.

(b): PN @ =1 as the two orders are coprime. Also PQ is a subgroup as @ is normal and has order
|PQ| = |P||Q|/|P N Q| = p*¢*> = |G| so G = PQ which implies that G = Q x P.

(c): If Q is cyclic then G = @ x; P for some homomorphism f : P — Aut(Q) & Aut(Z/q?Z) =
(Z)?2)* = Z/q(q — 1)Z. But |Im f| divides |P| = p? and | Aut(Q)| = ¢(¢ — 1) and so |Im f] |



(p*,q(¢—1)) =1aspfq—1since p| g+ 1but p#2. Thus f is trivial and G = P x Q. Since P and
@ have prime square order they are abelian so G is abelian.

(d): Write p?q® = [[n; with n, | n,._1 | ... | n1 so only 4 possibilities p?¢*> = p?¢> = p?>q-q=pg® -p =
pq - pq giving Z/(pq)*, Z/p*q x Z/q, Z/pg* x Z/p and (Z/pq)*. O

. Let G be a finite group of order 231.

(a) Show that G has normal 7-Sylow and 11-Sylow subgroups.
(b) Show that for groups A, B,C, (A xy B) x C =2 (A x C) Xfyxiq B where f xid : B — Aut(4) x
Aut(C) C Aut(A x C) sends everything to the trivial automorphism of C.

(¢) Show that the unique 11-Sylow subgroup of G is contained in Z(G). [Hint: Use part (b) to express
the 11-Sylow subgroup as a direct factor of G.]

Proof. (a): ny |33 andis =1 (mod 7) so ny =1;ny; |21 and is =1 mod 11 so ny; = 1.
(b): Consider ¢ : (A xf B) x C — (A x C) X ¢yia B given by ¢(a,b,c) = (a,c,b). Note that

¢((asb,c) -y (a0, ) = d(afp(a’), b, cc)
= (afp(a’),cc’, bb")
= ((a,c)(f x id)p(a’, "), bb")
= (a,¢,b) fxia (a', ', b)
= ¢(a,b,¢) - yxia p(a’, 0, )

so ¢ is a homomorphism which is visibly an isomorphism.

(c): Let P, Q, R be Sylow 3, 7 and 11 subgroups. Here ) and R are normal so QR = Q X R = Z/77Z
is also normal in G and intersects trivially with P (coprime orders) so PQR = G (comparing orders)
and thus G = (Q x R) x P. Here the semidirect product is for a homomorphism ¢ : P — Aut(Q x R) &
Aut(Q) x Aut(R) (since Q and R have coprime orders). Thus ¢(z) = (f(z), g(z)) where f(z) € Aut(Q)
and g(x) € Aut(R). But ord(g(x)) | (|P],| Aut(R)]) = (3,10) = 1 so g(x) = 1 for all z so ¢ = f x id.
By part (b) we deduce that G = (Q X R) x P = (Q x P) x R (Z/7Z x Z/3Z) x Z/11Z.

Finally, R is abelian and commutes with everything in the direct product G = (@ x P) X R so
RC Z(@G). O

. Let IFy be a finite field with ¢ elements and V' an n-dimensional vector space over [Fy.

(a) Show that GL(n,F,), the group of n x n matrices with coefficients in IF; and nonzero determinant,
acts simply transitively on the set of all possible bases of V. Here transitive means that there
is one single orbit (for any x,y there exists g such that gx = y) and simple means that if gz = z
for some x then g = 1.

(b) Deduce that
|GL(n,Fy)| = (¢" = 1)(¢" — )(¢" —¢*) -+ (¢" —¢" ")

This formula is useful in random algorithms where it computes the probability that a random matrix
is invertible.

Proof. (a): Fix a basis ey, ..., ey, for Fy. Then GL(n,F,;) = Autp, _s(FFy) and a vector space homo-
morphism is an isomorphism if and only if the span of ¢(e1), ..., d(e,) is also a basis. Thus the image
of (e;) under any invertible matrix is a basis and every basis v; = ) a;je; is the image of (e;) under the
necessarily invertible matrix (e;;). Since matrix multiplication is associative this implies that GL(n)
acts simply transitively on the set of bases.



(b): The action being simply transitive it follows that the size of the unique orbit (the number of
bases) equals the index of the trivial stabilizer inside the group, thus | GL(n,F,)|. Thus we only need
to count the number of bases. For v; we can choose any of the nonzero vectors in Fg‘. For vy we choose
any vector in Fy not in the span of vy, etc. Thus the number of bases is ¢" — 1 choices for vy, ¢" — ¢

choices for vq, etc so we get the desired formula. O



