Graduate Algebra Homework 5

Fall 2014
Due 2014-10-01 at the beginning of class

1. Let $n \geq 5$.
(a) Show that the only proper normal subgroup of S_{n} is A_{n}.
(b) Let H be a proper subgroup of S_{n}. Show that either $H=A_{n}$ or $\left[S_{n}: H\right] \geq n$. [Hint: Consider the action of S_{n} on S_{n} / H.]

Proof. (a): If $H \triangleleft S_{n}$ then $H \cap A_{n} \triangleleft A_{n}$ so is either 1 or A_{n}. If $H=A_{n}$ and H is proper then $H=A_{n}$. If $H \cap A_{n}=1$ then H contains some odd permutation $\sigma \in H \cap S_{n}-A_{n}$. Thus $S_{n}=H A_{n}$ and by the second isomorphism theorem $\left|S_{n}\right|=\left|H A_{n}\right|=|H|\left|A_{n}\right| /\left|H \cap A_{n}\right|=|H|\left|A_{n}\right|$ and so $|H|=2$ which means that $H=\langle(i j)\rangle$ for some transposition. But this is not normal.
(b): As in class get a homomorphism $f: S_{n} \rightarrow S_{S_{n} / H}$ with kernel contained in H. This kernel is normal in S_{n} so is either A_{n} or 1. If A_{n} then H contains A_{n} and so $H=A_{n}$. Otherwise S injects into $S_{S_{n} / H}$ and so $n!=\left|S_{n}\right| \leq\left[S_{n}: H\right]!=\left|S_{S_{n} / H}\right|$ so $\left[S_{n}: H\right] \geq n$.
2. Let G be a finite group and N the intersection of all p-Sylow subgroups of G. Show that N is a normal p-subgroup of G and that every normal p-subgroup of G is contained in N.

Proof. Let $P \in \operatorname{Syl}_{p}(G)$ in which case $N=\cap g P g^{-1}$. Thus $x N x^{-1}=\cap x g P(x g)^{-1}=\cap g P g^{-1}=N$ so N is normal. Suppose H is a normal p group. Then $H \subset P$ for some p-Sylow P. But then $g H g^{-1}=H \subset g P^{-1}$ for all g so $H \subset \cap g P g^{-1}=N$.
3. Let $2<p<q$ be two primes such that $p \mid q+1$. Let G be a group with $|G|=p^{2} q^{2}$.
(a) Show that there is a normal q-Sylow subgroup Q of G. [Hint: Show that $q \nmid p^{2}-1$.]
(b) Let P be a p-Sylow subgroup. Show that $G \cong Q \rtimes P$.
(c) If Q is cyclic show that G is abelian.
(d) List all isomorphism classes of abelian groups of order $p^{2} q^{2}$ with $p \neq q$.

There are nonabelian G of the form $(\mathbb{Z} / q \mathbb{Z})^{2} \rtimes(\mathbb{Z} / p \mathbb{Z})^{2}$, at least two nonisomorphic such semidirect products. Cf. http://www.icm.tu-bs.de/ag_algebra/software/small/number.html

Proof. (a): $n_{q} \equiv 1(\bmod q)$ and $n_{q} \mid p^{2}$. Since $p<q$ we have $n_{q} \neq p$. If $n_{q}=p^{2}$ then $q \mid p^{2}-1$ so either $q \mid p-1$ or $q \mid p+1$. The first case is not possible as $q>p$ and the second case is only possible if $q=p+1$ but that cannot be as $p>2$ and both p and q are prime. Thus $n_{q}=1$ as desired.
(b): $P \cap Q=1$ as the two orders are coprime. Also $P Q$ is a subgroup as Q is normal and has order $|P Q|=|P||Q| /|P \cap Q|=p^{2} q^{2}=|G|$ so $G=P Q$ which implies that $G \cong Q \rtimes P$.
(c): If Q is cyclic then $G \cong Q \rtimes_{f} P$ for some homomorphism $f: P \rightarrow \operatorname{Aut}(Q) \cong \operatorname{Aut}\left(\mathbb{Z} / q^{2} \mathbb{Z}\right) \cong$ $\left(\mathbb{Z} / q^{2} \mathbb{Z}\right)^{\times} \cong \mathbb{Z} / q(q-1) \mathbb{Z}$. But $|\operatorname{Im} f|$ divides $|P|=p^{2}$ and $|\operatorname{Aut}(Q)|=q(q-1)$ and so $|\operatorname{Im} f| \mid$
$\left(p^{2}, q(q-1)\right)=1$ as $p \nmid q-1$ since $p \mid q+1$ but $p \neq 2$. Thus f is trivial and $G \cong P \times Q$. Since P and Q have prime square order they are abelian so G is abelian.
(d): Write $p^{2} q^{2}=\prod n_{i}$ with $n_{r}\left|n_{r-1}\right| \ldots \mid n_{1}$ so only 4 possibilities $p^{2} q^{2}=p^{2} q^{2}=p^{2} q \cdot q=p q^{2} \cdot p=$ $p q \cdot p q$ giving $\mathbb{Z} /(p q)^{2}, \mathbb{Z} / p^{2} q \times \mathbb{Z} / q, \mathbb{Z} / p q^{2} \times \mathbb{Z} / p$ and $(\mathbb{Z} / p q)^{2}$.
4. Let G be a finite group of order 231 .
(a) Show that G has normal 7-Sylow and 11-Sylow subgroups.
(b) Show that for groups $A, B, C,\left(A \rtimes_{f} B\right) \times C \cong(A \times C) \rtimes_{f \times \text { id }} B$ where $f \times$ id : $B \rightarrow \operatorname{Aut}(A) \times$ Aut $(C) \subset \operatorname{Aut}(A \times C)$ sends everything to the trivial automorphism of C.
(c) Show that the unique 11-Sylow subgroup of G is contained in $Z(G)$. [Hint: Use part (b) to express the 11-Sylow subgroup as a direct factor of G.]

Proof. (a): $n_{7} \mid 33$ and is $\equiv 1(\bmod 7)$ so $n_{7}=1 ; n_{11} \mid 21$ and is $\equiv 1 \bmod 11$ so $n_{11}=1$.
(b): Consider $\phi:\left(A \rtimes_{f} B\right) \times C \rightarrow(A \times C) \rtimes_{f \times \text { id }} B$ given by $\phi(a, b, c)=(a, c, b)$. Note that

$$
\begin{aligned}
\phi\left((a, b, c) \cdot f\left(a^{\prime}, b^{\prime}, c^{\prime}\right)\right) & =\phi\left(a f_{b}\left(a^{\prime}\right), b b^{\prime}, c c^{\prime}\right) \\
& =\left(a f_{b}\left(a^{\prime}\right), c c^{\prime}, b b^{\prime}\right) \\
& =\left((a, c)(f \times \mathrm{id})_{b}\left(a^{\prime}, c^{\prime}\right), b b^{\prime}\right) \\
& =(a, c, b) \cdot f \times \mathrm{id}\left(a^{\prime}, c^{\prime}, b^{\prime}\right) \\
& =\phi(a, b, c) \cdot_{f \times \mathrm{id}} \phi\left(a^{\prime}, b^{\prime}, c^{\prime}\right)
\end{aligned}
$$

so ϕ is a homomorphism which is visibly an isomorphism.
(c): Let P, Q, R be Sylow 3,7 and 11 subgroups. Here Q and R are normal so $Q R \cong Q \times R \cong \mathbb{Z} / 77 \mathbb{Z}$ is also normal in G and intersects trivially with P (coprime orders) so $P Q R=G$ (comparing orders) and thus $G \cong(Q \times R) \rtimes P$. Here the semidirect product is for a homomorphism $\phi: P \rightarrow \operatorname{Aut}(Q \times R) \cong$ $\operatorname{Aut}(Q) \times \operatorname{Aut}(R)$ (since Q and R have coprime orders). Thus $\phi(x)=(f(x), g(x))$ where $f(x) \in \operatorname{Aut}(Q)$ and $g(x) \in \operatorname{Aut}(R)$. But $\operatorname{ord}(g(x)) \mid(|P|,|\operatorname{Aut}(R)|)=(3,10)=1$ so $g(x)=1$ for all x so $\phi=f \times$ id. By part (b) we deduce that $G \cong(Q \times R) \rtimes P \cong(Q \rtimes P) \times R \cong(\mathbb{Z} / 7 \mathbb{Z} \rtimes \mathbb{Z} / 3 \mathbb{Z}) \times \mathbb{Z} / 11 \mathbb{Z}$.
Finally, R is abelian and commutes with everything in the direct product $G \cong(Q \rtimes P) \times R$ so $R \subset Z(G)$.
5. Let \mathbb{F}_{q} be a finite field with q elements and V an n-dimensional vector space over \mathbb{F}_{q}.
(a) Show that $\mathrm{GL}\left(n, \mathbb{F}_{q}\right)$, the group of $n \times n$ matrices with coefficients in \mathbb{F}_{q} and nonzero determinant, acts simply transitively on the set of all possible bases of V. Here transitive means that there is one single orbit (for any x, y there exists g such that $g x=y$) and simple means that if $g x=x$ for some x then $g=1$.
(b) Deduce that

$$
\left|\operatorname{GL}\left(n, \mathbb{F}_{q}\right)\right|=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{n-1}\right)
$$

This formula is useful in random algorithms where it computes the probability that a random matrix is invertible.

Proof. (a): Fix a basis e_{1}, \ldots, e_{m} for \mathbb{F}_{q}^{n}. Then $\operatorname{GL}\left(n, \mathbb{F}_{q}\right) \cong \operatorname{Aut}_{\mathbb{F}_{q}-\mathrm{vs}}\left(\mathbb{F}_{q}^{n}\right)$ and a vector space homomorphism is an isomorphism if and only if the span of $\phi\left(e_{1}\right), \ldots, \phi\left(e_{n}\right)$ is also a basis. Thus the image of $\left(e_{i}\right)$ under any invertible matrix is a basis and every basis $v_{i}=\sum a_{i j} e_{j}$ is the image of $\left(e_{i}\right)$ under the necessarily invertible matrix $\left(e_{i j}\right)$. Since matrix multiplication is associative this implies that GL(n) acts simply transitively on the set of bases.
(b): The action being simply transitive it follows that the size of the unique orbit (the number of bases) equals the index of the trivial stabilizer inside the group, thus $\left|\mathrm{GL}\left(n, \mathbb{F}_{q}\right)\right|$. Thus we only need to count the number of bases. For v_{1} we can choose any of the nonzero vectors in \mathbb{F}_{q}^{n}. For v_{2} we choose any vector in \mathbb{F}_{q}^{n} not in the span of v_{1}, etc. Thus the number of bases is $q^{n}-1$ choices for $v_{1}, q^{n}-q$ choices for v_{2}, etc so we get the desired formula.

