
Graduate Algebra

Homework 5

Fall 2014

Due 2014-10-01 at the beginning of class

1. Let n ≥ 5.

(a) Show that the only proper normal subgroup of Sn is An.

(b) Let H be a proper subgroup of Sn. Show that either H = An or [Sn : H] ≥ n. [Hint: Consider
the action of Sn on Sn/H.]

Proof. (a): If HCSn then H ∩AnCAn so is either 1 or An. If H = An and H is proper then H = An.
If H ∩ An = 1 then H contains some odd permutation σ ∈ H ∩ Sn − An. Thus Sn = HAn and by
the second isomorphism theorem |Sn| = |HAn| = |H||An|/|H ∩ An| = |H||An| and so |H| = 2 which
means that H = 〈(ij)〉 for some transposition. But this is not normal.

(b): As in class get a homomorphism f : Sn → SSn/H with kernel contained in H. This kernel is
normal in Sn so is either An or 1. If An then H contains An and so H = An. Otherwise S injects into
SSn/H and so n! = |Sn| ≤ [Sn : H]! = |SSn/H | so [Sn : H] ≥ n.

2. Let G be a finite group and N the intersection of all p-Sylow subgroups of G. Show that N is a normal
p-subgroup of G and that every normal p-subgroup of G is contained in N .

Proof. Let P ∈ Sylp(G) in which case N = ∩gPg−1. Thus xNx−1 = ∩xgP (xg)−1 = ∩gPg−1 = N
so N is normal. Suppose H is a normal p group. Then H ⊂ P for some p-Sylow P . But then
gHg−1 = H ⊂ gPg−1 for all g so H ⊂ ∩gPg−1 = N .

3. Let 2 < p < q be two primes such that p | q + 1. Let G be a group with |G| = p2q2.

(a) Show that there is a normal q-Sylow subgroup Q of G. [Hint: Show that q - p2 − 1.]

(b) Let P be a p-Sylow subgroup. Show that G ∼= Qo P .

(c) If Q is cyclic show that G is abelian.

(d) List all isomorphism classes of abelian groups of order p2q2 with p 6= q.

There are nonabelian G of the form (Z/qZ)2 o (Z/pZ)2, at least two nonisomorphic such semidirect
products. Cf. http://www.icm.tu-bs.de/ag algebra/software/small/number.html

Proof. (a): nq ≡ 1 (mod q) and nq | p2. Since p < q we have nq 6= p. If nq = p2 then q | p2 − 1 so
either q | p− 1 or q | p+ 1. The first case is not possible as q > p and the second case is only possible
if q = p+ 1 but that cannot be as p > 2 and both p and q are prime. Thus nq = 1 as desired.

(b): P ∩ Q = 1 as the two orders are coprime. Also PQ is a subgroup as Q is normal and has order
|PQ| = |P ||Q|/|P ∩Q| = p2q2 = |G| so G = PQ which implies that G ∼= Qo P .

(c): If Q is cyclic then G ∼= Q of P for some homomorphism f : P → Aut(Q) ∼= Aut(Z/q2Z) ∼=
(Z/q2Z)× ∼= Z/q(q − 1)Z. But | Im f | divides |P | = p2 and |Aut(Q)| = q(q − 1) and so | Im f | |
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(p2, q(q − 1)) = 1 as p - q − 1 since p | q + 1 but p 6= 2. Thus f is trivial and G ∼= P ×Q. Since P and
Q have prime square order they are abelian so G is abelian.

(d): Write p2q2 =
∏
ni with nr | nr−1 | . . . | n1 so only 4 possibilities p2q2 = p2q2 = p2q · q = pq2 · p =

pq · pq giving Z/(pq)2, Z/p2q × Z/q, Z/pq2 × Z/p and (Z/pq)2.

4. Let G be a finite group of order 231.

(a) Show that G has normal 7-Sylow and 11-Sylow subgroups.

(b) Show that for groups A,B,C, (A of B) × C ∼= (A × C) of×id B where f × id : B → Aut(A) ×
Aut(C) ⊂ Aut(A× C) sends everything to the trivial automorphism of C.

(c) Show that the unique 11-Sylow subgroup of G is contained in Z(G). [Hint: Use part (b) to express
the 11-Sylow subgroup as a direct factor of G.]

Proof. (a): n7 | 33 and is ≡ 1 (mod 7) so n7 = 1; n11 | 21 and is ≡ 1 mod 11 so n11 = 1.

(b): Consider φ : (Aof B)× C → (A× C) of×id B given by φ(a, b, c) = (a, c, b). Note that

φ((a, b, c) ·f (a′, b′, c′)) = φ(afb(a
′), bb′, cc′)

= (afb(a
′), cc′, bb′)

= ((a, c)(f × id)b(a
′, c′), bb′)

= (a, c, b) ·f×id (a′, c′, b′)

= φ(a, b, c) ·f×id φ(a′, b′, c′)

so φ is a homomorphism which is visibly an isomorphism.

(c): Let P , Q, R be Sylow 3, 7 and 11 subgroups. Here Q and R are normal so QR ∼= Q×R ∼= Z/77Z
is also normal in G and intersects trivially with P (coprime orders) so PQR = G (comparing orders)
and thus G ∼= (Q×R)oP . Here the semidirect product is for a homomorphism φ : P → Aut(Q×R) ∼=
Aut(Q)×Aut(R) (since Q and R have coprime orders). Thus φ(x) = (f(x), g(x)) where f(x) ∈ Aut(Q)
and g(x) ∈ Aut(R). But ord(g(x)) | (|P |, |Aut(R)|) = (3, 10) = 1 so g(x) = 1 for all x so φ = f × id.
By part (b) we deduce that G ∼= (Q×R) o P ∼= (Qo P )×R ∼= (Z/7Z o Z/3Z)× Z/11Z.

Finally, R is abelian and commutes with everything in the direct product G ∼= (Q o P ) × R so
R ⊂ Z(G).

5. Let Fq be a finite field with q elements and V an n-dimensional vector space over Fq.

(a) Show that GL(n,Fq), the group of n×n matrices with coefficients in Fq and nonzero determinant,
acts simply transitively on the set of all possible bases of V . Here transitive means that there
is one single orbit (for any x, y there exists g such that gx = y) and simple means that if gx = x
for some x then g = 1.

(b) Deduce that
|GL(n,Fq)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1)

This formula is useful in random algorithms where it computes the probability that a random matrix
is invertible.

Proof. (a): Fix a basis e1, . . . , em for Fn
q . Then GL(n,Fq) ∼= AutFq−vs(Fn

q ) and a vector space homo-
morphism is an isomorphism if and only if the span of φ(e1), . . . , φ(en) is also a basis. Thus the image
of (ei) under any invertible matrix is a basis and every basis vi =

∑
aijej is the image of (ei) under the

necessarily invertible matrix (eij). Since matrix multiplication is associative this implies that GL(n)
acts simply transitively on the set of bases.
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(b): The action being simply transitive it follows that the size of the unique orbit (the number of
bases) equals the index of the trivial stabilizer inside the group, thus |GL(n,Fq)|. Thus we only need
to count the number of bases. For v1 we can choose any of the nonzero vectors in Fn

q . For v2 we choose
any vector in Fn

q not in the span of v1, etc. Thus the number of bases is qn − 1 choices for v1, qn − q
choices for v2, etc so we get the desired formula.
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