Graduate Algebra Homework 6

Fall 2014

Due 2014-10-08 at the beginning of class

- 1. Show that $S_n^{ab} \cong \mathbb{Z}/2\mathbb{Z}$ by showing that $[S_n, S_n] = A_n$.
- 2. Suppose G is a finite group with p^3 elements where p > 2 is odd.
 - (a) Find all possibilities for G abelian.
 - (b) For the rest of the problem suppose G is not abelian. Show that $G/Z(G) \cong (\mathbb{Z}/p\mathbb{Z})^2$.
 - (c) Conclude that [G, G] = Z(G). [Hint: Use the universal property of abelianization.]
 - (d) Suppose G has an element a of order p² and suppose that every b ∉ ⟨a⟩ also has order p².
 i. Show that b^p = a^{pk} for some k coprime to p.
 - ii. Verify by induction that $(a^k b^{-1})^n = a^{kn} b^{-n} [b, a^{-k}]^{n(n-1)/2}$ for all n. [Hint: Use (c).]
 - iii. Conclude that $a^k b^{-1}$ has order p and is not in $\langle a \rangle$, thus getting a contradiction.
 - (e) Suppose G has an element a of order p^2 . Show that $G \cong \mathbb{Z}/p^2\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$.
- 3. Let G be a finite group, H a normal subgroup and $P \in Syl_p(H)$.
 - (a) Show that $gPg^{-1} \in \text{Syl}_p(H)$ for every $g \in G$. [Here $g \in G$ not only in H.]
 - (b) Deduce that there exists $h \in H$ such that $h^{-1}g \in N_G(P)$.
 - (c) Show that $G = HN_G(P)$.
 - (d) Deduce that $[G:H] \mid |N_G(P)|$.
- 4. Let G be a group. A subgroup H is said to be **maximal** if it is not contained properly in any proper subgroup of G.
 - (a) Show that if G is finite then every proper subgroup of G is contained in a maximal subgroup of G.
 - (b) What are the maximal subgroups of \mathbb{Z} ?
 - (c) Show that \mathbb{Q} has no maximal subgroups.
- 5. For a finite group G let $\Phi(G)$ be the intersection of all maximal subgroups of G (if no proper subgroup exists, define $\Phi(G) = G$).
 - (a) Show that $\Phi(G) \lhd G$.
 - (b) Show that every Sylow subgroup of $\Phi(G)$ is normal in G. [Hint: Use the previous two problems.]
 - (c) Find $\Phi(S_n)$ and $\Phi(A_n)$ for all $n \ge 2$.

The group $\Phi(G)$ is called the Frattini subgroup of G. One application of this problem is to Galois theory next semester, where it implies that the composite of all minimal subextensions of a Galois extension is Galois.