Graduate Algebra
 Homework 6

Fall 2014
Due 2014-10-08 at the beginning of class

1. Show that $S_{n}^{\mathrm{ab}} \cong \mathbb{Z} / 2 \mathbb{Z}$ by showing that $\left[S_{n}, S_{n}\right]=A_{n}$.

Proof. Know that $[G, G] \triangleleft G$ and so $\left[S_{n}, S_{n}\right]$ is one of $1, A_{n}$ or S_{n} by the last homework. It's not 1 since S_{n} is not abelian, and $\varepsilon\left(g h g^{-1} h^{-1}\right)=1$ and so $[g, h] \in A_{n}$ for all $g, h \in S_{n}$ thus $\left[S_{n}, S_{n}\right]=A_{n}$. Thus $S_{n}^{\mathrm{ab}}=S_{n} / A_{n} \cong \mathbb{Z} / 2 \mathbb{Z}$.
2. Suppose G is a finite group with p^{3} elements where $p>2$ is odd.
(a) Find all possibilities for G abelian.
(b) For the rest of the problem suppose G is not abelian. Show that $G / Z(G) \cong(\mathbb{Z} / p \mathbb{Z})^{2}$.
(c) Conclude that $[G, G]=Z(G)$. [Hint: Use the universal property of abelianization.]
(d) Suppose G has an element a of order p^{2} and suppose that every $b \notin\langle a\rangle$ also has order p^{2}.
i. Show that $b^{p}=a^{p k}$ for some k coprime to p.
ii. Verify by induction that $\left(a^{k} b^{-1}\right)^{n}=a^{k n} b^{-n}\left[b, a^{-k}\right]^{n(n-1) / 2}$ for all n. [Hint: Use (c).]
iii. Conclude that $a^{k} b^{-1}$ has order p and is not in $\langle a\rangle$, thus getting a contradiction.
(e) Suppose G has an element a of order p^{2}. Show that $G \cong \mathbb{Z} / p^{2} \mathbb{Z} \rtimes \mathbb{Z} / p \mathbb{Z}$.

Proof. (a) Write $|G|=n_{1} \cdots n_{r}$ with $n_{r}|\ldots| n_{1}$. Here $p^{3}=p^{3}=p^{2} \cdot p=p \cdot p \cdot p$. Thus $\mathbb{Z} / p^{3} \mathbb{Z}$, $\mathbb{Z} / p^{2} \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$ and $(\mathbb{Z} / p \mathbb{Z})^{3}$ are the only abelian groups of order p^{3}.
(b): Since G is not abelian, homework 3 problem 5 gives that $G / Z(G)$ is not cyclic. Moreover, $Z(G)$ is nontrivial since G is a p-group and so the only possibility is $G / Z(G) \cong(\mathbb{Z} / p \mathbb{Z})^{2}$ with $Z(G) \cong \mathbb{Z} / p \mathbb{Z}$. (c): The projection map $G \rightarrow G / Z(G)$ is induced from $G^{\text {ab }}=G /[G, G] \rightarrow G / Z(G)$ by the universal property of abelianization, since $G / Z(G)$ is abelian. Thus $[G, G]$ is contained in the kernel of this map, which is $Z(G)$. But $[G, G] \neq 1$ since G is not abelian and there is only one nontrivial subgroup of $Z(G) \cong \mathbb{Z} / p \mathbb{Z}$, namely $Z(G)$ itself.
(d):
(i): b^{p} has order p so is in $\langle a\rangle$ and thus is of the form $a^{p k}$ since these are the only order powers of a.
(ii): Base case is $n=1$, contentless. We keep using that $[G, G]=Z(G)$ so all commutators commute with everything. For the inductive hypothesis need to check that

$$
\begin{aligned}
a^{k(n+1)} b^{-n-1}\left[b, a^{-k}\right]^{n(n+1) / 2} & =\left(a^{k} b^{-1}\right)^{n+1} \\
& =\left(a^{k} b^{-1}\right)^{n} a^{k} b^{-1} \\
& =a^{k n} b^{-n}\left[b, a^{-k}\right]^{n(n-1) / 2} a^{k} b^{-1}
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
a^{k} b^{-n}\left[b, a^{-k}\right]^{n} & =b^{-n} a^{k} \\
{\left[b, a^{-k}\right]^{n} } & =b^{n} a^{-k} b^{-n} a^{k}
\end{aligned}
$$

This again check by induction. The base case is again contentless. For the inductive hypothesis:

$$
\begin{aligned}
b^{n+1} a^{-k} b^{-n-1} a^{k} & =b\left(b^{n} a^{-k} b^{-n}\right) b^{-1} a^{k} \\
& =b\left(\left[b, a^{-k}\right]^{n} a^{-k}\right) b^{-1} a^{k} \\
& =\left[b, a^{-k}\right]^{n+1}
\end{aligned}
$$

(iii): Thus $\left(a^{k} b^{-1}\right)^{p}=a^{p k} b^{-p}\left[b, a^{-k}\right]^{p(p-1) / 2}=1$ since $a^{p k}=b^{p}$ and $|[G, G]|=p$; here we used that $p(p-1) / 2$ is divisible by p if p is odd. Also $a^{k} b^{-1} \notin\langle a\rangle$ since b is not a power of a and we get our contradiction.
(e): From (d) there exists $b \notin\langle a\rangle$ of order p. Then $N=\langle a\rangle \triangleleft G$ because it has index p the smallest prime divisor of $|G|$ and this intersect trivially with $H=\langle b\rangle$. Thus $N H$ is a subgroup of G and has order $p^{2} \cdot p=|G|$ so $G=N H$. Thus $G \cong N \rtimes H$ as desired.
3. Let G be a finite group, H a normal subgroup and $P \in \operatorname{Syl}_{p}(H)$.
(a) Show that $g P g^{-1} \in \operatorname{Syl}_{p}(H)$ for every $g \in G$. [Here $g \in G$ not only in H.]
(b) Deduce that there exists $h \in H$ such that $h^{-1} g \in N_{G}(P)$.
(c) Show that $G=H N_{G}(P)$.
(d) Deduce that $[G: H]\left|\left|N_{G}(P)\right|\right.$.

Proof. (a): $g P g^{-1} \subset g H g^{-1}=H$ by normality and has same order as P thus $g P g^{-1} \in \operatorname{Syl}_{p}(H)$.
(b): All p-Sylow are conjugate in H so there exists $h \in H$ with $g P g^{-1}=h P h^{-1}$. Thus $h^{-1} g P\left(h^{-1} g\right)^{-1}=$ P so $h^{-1} g \in N_{G}(P)$.
(c): Since H is normal, $H N_{G}(P)$ is a subgroup of G and since $h^{-1} g \in N_{G}(P)$ we deduce that $G=$ $H N_{G}(P)$.
(d): From the isomorphism theorems $|G / H|=\left|H N_{G}(P) / H\right|=\left|N_{G}(P) / N_{G}(P) \cap H\right|| | N_{G}(P) \mid$ as desired.
4. Let G be a group. A subgroup H is said to be maximal if it is not contained properly in any proper subgroup of G.
(a) Show that if G is finite then every proper subgroup of G is contained in a maximal subgroup of G.
(b) What are the maximal subgroups of \mathbb{Z} ?
(c) Show that \mathbb{Q} has no maximal subgroups.

Proof. (a): By induction on $[G: H]$. If there are no subgroups between H and G then H by definition is maximal. This is the base case. For the inductive step: if $H \subsetneq K \subsetneq G$ for a subgroup K, then $[G: K]<[G: H]$ and by induction K and thus also H is in some maximal subgroup of G.
(b): We already know that the subgroups of \mathbb{Z} are of the form $n \mathbb{Z}$. Note that $n \mathbb{Z} \subset m \mathbb{Z}$ iff $m \mid n$ and so the maximal subgroups are precisely $p \mathbb{Z}$ for p prime.
(c): Suppose G is a maximal subgroup of \mathbb{Q}. Pick $p / q \in \mathbb{Q}-G$. As in the case of \mathbb{Z}, the subgroups of $(1 / q n) \mathbb{Z}$ are all of the form $(l / q n) \mathbb{Z}$ for some $l \in \mathbb{Z}$. Thus $G \cap(1 / q n) \mathbb{Z}=\left(l_{n} / q n\right) \mathbb{Z}$ for some $l_{n} \in \mathbb{Z}$. Look at $\frac{1}{q n l_{n}} \in \mathbb{Q}=p / q \mathbb{Z}+G$. We deduce that there exists $m \in \mathbb{Z}$ such that $1 /\left(q n l_{n}\right)=p m / q+g$ for some $g \in G$ which is then $g=\frac{1-p m n l_{n}}{q n l_{n}}$. But then $n g=\frac{1-p m n l_{n}}{q n} \in G \cap \frac{1}{q n} \mathbb{Z}=\frac{l_{n}}{q n} \mathbb{Z}$ which implies that $l_{n} \mid 1-p m n l_{n}$ and so $l_{n}=1$.
Thus $G \cap \frac{1}{q n} \mathbb{Z}=\frac{1}{q n} \mathbb{Z}$ and so $G=\mathbb{Q}$ since every rational number is in some $\frac{1}{q n} \mathbb{Z}$.
5. For a finite group G let $\Phi(G)$ be the intersection of all maximal subgroups of G (if no proper subgroup exists, define $\Phi(G)=G)$.
(a) Show that $\Phi(G) \triangleleft G$.
(b) Show that every Sylow subgroup of $\Phi(G)$ is normal in G. [Hint: Use the previous two problems.]
(c) Find $\Phi\left(S_{n}\right)$ and $\Phi\left(A_{n}\right)$ for all $n \geq 2$.

The group $\Phi(G)$ is called the Frattini subgroup of G. One application of this problem is to Galois theory next semester, where it implies that the composite of all minimal subextensions of a Galois extension is Galois.

Proof. (a): If H is maximal in G then $g H g^{-1}$ is also maximal because $g H g^{-1} \subset K$ for K proper implies $H \subset g^{-1} K g$. Thus $g \Phi(G) g^{-1}=\cap g H^{-1}=\cap H=\Phi(G)$ where H runs over the maximal subgroups of G.
(b): Let P be a Sylow subgroup of $\Phi(G) \triangleleft G$. Then problem 3 implies that $G=\Phi(G) N_{G}(P)$. If $N_{G}(P)=G$ then $P \triangleleft G$, by definition. If not then $N_{G}(P)$ is contained in some maximal subgroup H of G by part (a). But also $\Phi(G) \subset H$ and so $\Phi(G) N_{G}(P) \subset H$ which contradicts that the composite is G.
(c): $\Phi\left(A_{n}\right) \triangleleft A_{n}$ and $\Phi\left(S_{n}\right) \triangleleft S_{n}$.

Suppose $n \geq 5$. Then $\Phi\left(A_{n}\right)$ is 1 or A_{n} and $\Phi\left(S_{n}\right)$ is one of $1, A_{n}$ and S_{n}. As A_{n} and S_{n} have proper Sylow subgroups which cannot be normal in A_{n} respectively S_{n} it follows that $\Phi\left(A_{n}\right)=1$ and $\Phi\left(S_{n}\right)=1$.
Suppose $n=2,3$. Then $\Phi\left(A_{n}\right)=A_{n}$ by definition since A_{n} has prime order. $\Phi\left(S_{2}\right)=S_{2}$ by definition and $\Phi\left(S_{3}\right)=1$ as A_{3} and $\langle(12)\rangle$ are maximal subgroups.
Suppose $n=4$. Again $\Phi\left(A_{4}\right) \neq A_{4}$ and is a normal subgroup of A_{4}. The group A_{4} has no index 2 subgroup as such a group would be normal and would have a unique 3-Sylow subgroup. But then by the lemma from class A_{4} would have a unique 3 -Sylow subgroup which is not the case. Thus the unique 2-Sylow subgroup of A_{4} and any of the 3 -Sylow subgroups are in fact maximal and so $\Phi\left(A_{4}\right)=1$.
What about $\Phi\left(S_{4}\right)$? Certainly A_{4} is maximal and from the homework every maximal subgroup $H \neq A_{4}$ would have to have $[G: H] \geq 4$. Thus $S_{\{i, j, k\}} \subset S_{4}$ is also maximal for i, j, k distinct among $1,2,3,4$. This implies that $\Phi\left(S_{4}\right) \subset A_{4} \cap\left(\cap S_{\{i, j, k\}}\right)=1$.

