Graduate Algebra Homework 7

Fall 2014
Due 2014-10-29 at the beginning of class

1. Let N be a normal subgroup of G. If N and G / N are solvable, show that G is solvable.

Proof. The solvability condition implies that $N=N_{0} \triangleright N_{1} \triangleright \ldots \triangleright N_{k}=1$ with N_{i} / N_{i+1} abelian and $G / N=H_{0} \triangleright H_{1} \triangleright \ldots \triangleright H_{l}=1$ with H_{i} / H_{i+1} abelian. We proved in class that $H_{i}^{\prime}=\left\{g \in G \mid g+N \in H_{i}\right\}$ is a normal subgroup of G and $N \subset H_{i}^{\prime}$.
Now the third isomorphism theorem for groups shows that $H_{i}^{\prime} / H_{i+1}^{\prime} \cong\left(H_{i}^{\prime} / N\right) /\left(H_{i+1}^{\prime} / N\right)$ and the first isomorphism theorem shows that $H_{i}^{\prime} / N \cong H_{i}$. Thus $H_{i}^{\prime} / H_{i+1}^{\prime}$ is abelian. Thus we get the composition series

$$
G \triangleright H_{1}^{\prime} \triangleright \ldots H_{l}^{\prime}=N \triangleright N_{1} \triangleright \ldots \triangleright N_{k}=1
$$

and successive quotients are abelian. Thus G is solvable.
2. Show that $D_{2 n}$ is nilpotent iff n is a power of 2 .

Proof. I claim by induction that $D_{2 n}^{(k)}$ defined as $D_{2 n}^{(0)}=D_{2 n}$ and $D_{2 n}^{(k+1)}=\left[D_{2 n}^{(k)}, D_{2 n}\right]$ is $D_{2 n}^{(k)}=\left\langle R^{2^{k}}\right\rangle$ for $k \geq 1$. Indeed, we saw in class that $\left[D_{2 n}, D_{2 n}\right]=\left\langle R^{2}\right\rangle$, giving the base case. For the inductive step enough to note that $\left[R^{2^{k} i}, R^{j}\right]=1$ and $\left[R^{2^{k} i}, F R^{j}\right]=R^{2^{k} i} F R^{j} R^{-2^{k} i} R^{-j} F=R^{2^{k} i+2^{k} i}=R^{2^{k+1} i}$.
Thus $D_{2 n}$ is nilpotent iff $\left\langle R^{2^{k}}\right\rangle=1$ for k large enough. Writing additively, need to find n such that $2^{k}(\mathbb{Z} / n \mathbb{Z}) \subset \mathbb{Z} / n \mathbb{Z}$ is trivial for k large enough.
Write $n=2^{a} m$ with m odd. Then

$$
2^{k}\left(\mathbb{Z} / 2^{a} m \mathbb{Z}\right)= \begin{cases}\mathbb{Z} / 2^{a-k} m \mathbb{Z} & k \leq a \\ 2^{k-a} \mathbb{Z} / m \mathbb{Z} & k>a\end{cases}
$$

Since m is odd then $x \mapsto 2^{k-a} x$ is an automorphism of $\mathbb{Z} / m \mathbb{Z}$ and so $2^{k-a} \mathbb{Z} / m \mathbb{Z}=\mathbb{Z} / m \mathbb{Z}$ which implies that $D_{2 n}^{(k)}=\mathbb{Z} / m \mathbb{Z}$ for k large enough. Thus $D_{2 n}$ is nilpotent iff $n=2^{a}$.
3. Let $I=\mathbb{Z}_{n \geq 1}$ with partial order $m \leq n$ iff $m \mid n$.
(a) Show that I is a directed set.
(b) Let $G_{n}=\mathbb{Z}$ and for $m \mid n$ let $\iota_{m, n}(x)=x n / m$. Show that $\left(G_{n}\right)$ is a direct system of groups.
(c) Show that $\underset{\longrightarrow}{\lim } G_{n} \cong \mathbb{Q}$.

Proof. (a): If $m, n \in \mathbb{Z}_{\geq 1}$ then $m, n \leq m n$ so I is a directed set.
(b): Suppose $m \leq n \leq p$. Then $\iota_{n, p} \circ \iota_{m, n}(x)=\iota_{n, p}(x n / m)=x n / m p / n=x p / m=\iota_{m, p}(x)$. This shows that $\left(G_{n}\right)$ is a direct system of groups.
(c): Consider $f: \mathbb{Q} \rightarrow \underline{\longrightarrow} G_{n}$ sending m / n to $m \in \mathbb{Z}=G_{n}$. We need to check that this is well-defined. But $m / n=p / q$ iff $m / \overrightarrow{n=} m k / n k=p l / q l=p / q$ with $m k=p l$ and $n k=q l$. But $f(m / n)=m \in G_{n}$, $f(m k / n k)=m k \in G_{n k}$ and this is simply $\iota_{n, n k}\left(m \in G_{n}\right)$ which is equal to $m \in G_{n}$ in $\underset{\longrightarrow}{\lim } G_{n}$. Thus $f(m / n)=f(m k / n k)=f(p l / q l)=f(p / q)$ and so f is well-defined. Moreover, $f(m / n+\overrightarrow{p / q})=$ $f((m q+n p) /(n q))=m q+n p \in G_{n q}$ while $f(m / n)+f(p / q)=\left(m \in G_{n}\right)+\left(p \in G_{q}\right)=(m q \in$ $\left.G_{n q}\right)+\left(n p \in G_{n q}\right)=(m q+n p) \in G_{n q}$ and so f is a homomorphism. Finally, f is injective $(m / n=0$ iff $m=0$) and surjective as $x \in \underset{\longrightarrow}{\lim } G_{n}$ is of the form $m \in G_{n}$ for some m and n and so $x=f(m / n)$.
4. Show that \mathbb{Z}_{p} is torsion-free, i.e., there is no element $x \in \mathbb{Z}_{p}$ such that $m x=0$ for some nonzero integer m. [Here $\mathbb{Z}_{p}=\underset{\longleftarrow}{\lim } \mathbb{Z} / p^{n} \mathbb{Z}$.]

Proof. $\mathbb{Z}_{p}=\lim \mathbb{Z} / p^{n} \mathbb{Z}$ and let $x=\left(x_{p}, x_{p^{2}}, \ldots\right) \in \mathbb{Z}_{p}$ with $x_{p^{k}} \in \mathbb{Z} / p^{k} \mathbb{Z}$ such that $x_{p^{k+1}} \equiv x_{p^{k}}$ $\left(\bmod p^{k}\right)$. Suppose $m x=0$ for some $m \in \mathbb{Z}-0$. Then $m x_{p^{k}}=0$ for all k and so $m x_{p^{k}} \equiv 0\left(\bmod p^{k}\right)$ for all k. Choose representatives $y_{p^{k}} \in \mathbb{Z}$ for $x_{p^{k}} \in \mathbb{Z} / p^{k} \mathbb{Z}$. Then $p^{k} \mid m y_{p^{k}}$ for all k. Write $m=p^{a} n$ with $p \nmid n$. Then $p^{k} \mid p^{a} n y_{p^{k}}$ for all k and so $p^{k-a} \mid n y_{p^{k}}$ for $k>a$. Since $p \nmid n$ this implies that $p^{k-a} \mid y_{p^{k}}$ and so $y_{p^{k}} \equiv 0\left(\bmod p^{k-a}\right)$. But $y_{p^{k}} \equiv y_{p^{k-a}}\left(\bmod p^{k-a}\right)$ and so $x_{p^{k-a}}=0$ for all $k>a$ giving $x=0$.
5. Show that every open subgroup of a topological group is closed in the topology. Deduce that every open subgroup of a profinite group is compact.

Proof. Note that $G=\sqcup_{g \in G / H} g H$ and so $H=G \backslash \sqcup_{g \in G / H-\{1\}} g H$. Since $g H$ is open, so is the disjoint union and so H is closed.
A profinite group is compact and a closed subset of a compact set is compact.
6. Let $\left(G_{u}\right)_{u \in I}$ be a direct system of finite groups with homomorphisms $\iota_{u, v}: G_{u} \rightarrow G_{v}$ for $u \leq v$ and $\iota_{u}: G_{u} \rightarrow G:=\underset{\rightarrow}{\lim } G_{u}$. If H is a subgroup of G show that $\left(H_{u}\right)_{u \in I}$ with $H_{u}=\iota_{u}^{-1}(H)$ is a direct system of groups with $H=\underset{\longrightarrow}{\lim } H_{u}$.

Proof. Only need to check that $\iota_{u, v}$ sends H_{u} to H_{v}. Suppose $h \in H_{u}$, i.e., $\iota_{u}(h) \in H$. Then $\iota_{v}\left(\iota_{u, v}(h)\right)=\iota_{u}(h) \in H$ and so $\iota_{u, v}(h) \in H_{v}$ by definition.
Finally, the map $\underset{\longrightarrow}{\lim } H_{u} \rightarrow H$ sending $h \in H_{u}$ to $\iota_{u}(h)$ is well-defined by the same computation as above. It is also a homomorphism as each ι_{u} is a homomorphism. If $\iota_{u}(h)=1$ then $h \in \operatorname{ker} \iota_{u} \cap G_{u}=1 \in G_{u}$ so ι_{u} is injective. Finally, if $h \in H$ then $h \in G_{u}$ for some u and $\iota_{u}\left(h \in G_{u}\right)=h \in H$ so the map is also surjective.
7. Let G be a topological group and \widehat{G} its Pontryagin dual with the dual topology.
(a) If G is compact show that \widehat{G} has the discrete topology.
(b) Compute the Pontryagin dual of \mathbb{R} / \mathbb{Z}.

Proof. (a): Since translation by a group element is continuous it suffices to show that $f \equiv 1$ sending $g \in G$ to $1 \in S^{1}$ gives an open set $\{f\}$. Take $K=G$ compact and $U \subset S^{1}$ the open right semicircle on S^{1}. What is $W(K, U)=W(G, U)$? It consists of continuous $\phi: G \rightarrow S^{1}$ sending G to U. Thus $\phi(G) \subset U$ is a group. Choose $z=e^{i \theta} \in \phi(G)$ with $\theta \in(-\pi / 2, \pi / 2)$. If $\theta \neq 0$, then for $n=\left\lceil\frac{\pi}{2 \theta}\right\rceil$ we have $z^{n}=e^{i n \theta} \notin U$ but $z^{n} \in \phi(G)$, contradicting the choice of G. Thus $\phi(G)=1$ and so $\phi=f$ which implies that $W(K, U)=\{f\}$ is open as desired.
(b): The projection map $p: \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}$ is continuous (by definition) and for every $f \in \widehat{\mathbb{R} / \mathbb{Z}}$ the composite $f \circ p: \mathbb{R} \rightarrow S^{1}$ will again be continuous. In class we determined that $\widehat{\mathbb{R}} \cong \mathbb{R}$ the functions being of the form $f_{r}(x)=e^{2 \pi i r x}$ for $r \in \mathbb{R}$. Thus $f \circ p=f_{r}$ for some r and since $p(1)=0$ it must be that $1=f(0)=f(p(1))=f_{r}(1)=e^{2 \pi i r}$ and so $r \in \mathbb{Z}$. Reciprocally, the map f_{r} is of the form $f \circ p$ iff $\mathbb{Z} \subset$ ker f_{r} so if $r \in \mathbb{Z}$ then this is satisfied and $x \mapsto e^{2 \pi i r x}$ for $r \in \mathbb{Z}$ is in $\widehat{\mathbb{R} / \mathbb{Z}}$.

