Graduate Algebra Homework 8

Fall 2014
Due 2014-11-12 at the beginning of class

Throughout this problem set R is a commutative ring. Recall that $\mathfrak{p} \subset R$ is a prime ideal if $\mathfrak{p} \neq R$ and R / \mathfrak{p} is an integral domain, and $\mathfrak{m} \subset R$ is a maximal ideal if $\mathfrak{m} \neq R$ and R / \mathfrak{m} is a field.

1. Let R be a commutative ring.
(a) If \mathfrak{p} is a prime ideal of R show that $\mathfrak{p}[X] \subset R[X]$ is a prime ideal. Is $\mathfrak{m}[X] \subset R[X]$ a maximal ideal for a prime ideal \mathfrak{m} of R ?
(b) Suppose $\sqrt{-5} \in R$. Show that $(2,1+\sqrt{-5})(3,1-\sqrt{-5})=(1-\sqrt{-5})$ as ideals.
(c) Let $I \subset R$ be an ideal. Show that there exists a bijection between the set of all/prime/maximal ideals of R containing I and the set of all/prime/maximal ideals of R / I.
2. Let R be a commutative ring. A minimal prime ideal in R is a prime ideal \mathfrak{p} such that if $\mathfrak{q} \subset \mathfrak{p}$ is an ideal of R then either $\mathfrak{q}=\mathfrak{p}$ or $\mathfrak{q}=(0)$. Show that every prime ideal \mathfrak{p} contains a nonzero minimal prime ideal. [Hint: Zorn's lemma.]
3. (a) Let $I, J, \mathfrak{a} \subset R$ be ideals such that $\mathfrak{a} \subset I \cup J$ show that $\mathfrak{a} \subset I$ or $\mathfrak{a} \subset J$.
(b) Suppose \mathfrak{p} is a prime ideal of R and $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n} \subset R$ are ideals such that $\cap \mathfrak{a}_{i} \subset \mathfrak{p}$. Show that $\mathfrak{a}_{i} \subset \mathfrak{p}$ for some i.
4. Let $\mathfrak{a}, \mathfrak{b} \subset R$ be ideals. Define the ideal quotient $(\mathfrak{a}: \mathfrak{b})=\{x \in R \mid x \mathfrak{b} \subset \mathfrak{a}\}$.
(a) Show that $(\mathfrak{a}: \mathfrak{b})$ is an ideal of R.
(b) Show that $(\mathfrak{a}: \mathfrak{b}) \mathfrak{b} \subset \mathfrak{a} \subset(\mathfrak{a}: \mathfrak{b})$ and that if \mathfrak{c} is another ideal then $((\mathfrak{a}: \mathfrak{b}): \mathfrak{c})=(\mathfrak{a}: \mathfrak{b} \mathfrak{c})$.
(c) If $m, n \in \mathbb{Z}-0$ compute $((m):(n))$ as an ideal of \mathbb{Z}.
(d) Compute $((2, X):(3, X)),((6, X):(2, X))$ and $((6):(3, X))$ in $\mathbb{Z}[X]$.
5. (a) Show that $P(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots \in R \llbracket X \rrbracket$ is invertible if and only if $a_{0} \in R^{\times}$.
(b) Show that in any commutative ring the sum of a unit and a nilpotent is a unit.
(c) Show that $P(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X]$ is invertible if and only if $a_{0} \in R^{\times}$and a_{1}, \ldots, a_{n} are nilpotent. [Hint: If $g(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m}$ is its inverse show that $a_{n}^{r+1} b_{m-r}=0$ for all $0 \leq r \leq m$ by induction. Then use the previous part.]
(d) Show that $P(X)$ is nilpotent if and only if a_{0}, \ldots, a_{n} are all nilpotent.
(e) Show that in $R[X]$ the nilradical is the same as the Jacobson radical.
(f) Compute $\sqrt{\left(x y, y^{3}\right)}$ in $\mathbb{C}[x, y]$ and $\sqrt{(108)}$ in \mathbb{Z}.
