Graduate Algebra Homework 8

Fall 2014
Due 2014-11-12 at the beginning of class

Throughout this problem set R is a commutative ring. Recall that $\mathfrak{p} \subset R$ is a prime ideal if $\mathfrak{p} \neq R$ and R / \mathfrak{p} is an integral domain, and $\mathfrak{m} \subset R$ is a maximal ideal if $\mathfrak{m} \neq R$ and R / \mathfrak{m} is a field.

1. Let R be a commutative ring.
(a) If \mathfrak{p} is a prime ideal of R show that $\mathfrak{p}[X] \subset R[X]$ is a prime ideal. Is $\mathfrak{m}[X] \subset R[X]$ a maximal ideal for a prime ideal \mathfrak{m} of R ?
(b) Suppose $\sqrt{-5} \in R$. Show that $(2,1+\sqrt{-5})(3,1-\sqrt{-5})=(1-\sqrt{-5})$ as ideals.
(c) Let $I \subset R$ be an ideal. Show that there exists a bijection between the set of all/prime/maximal ideals of R containing I and the set of all/prime/maximal ideals of R / I.

Proof. (a): $R[X] / \mathfrak{p}[X] \cong(R / \mathfrak{p})[X]$. \mathfrak{p} is prime so R / \mathfrak{p} is a domain so $(R / \mathfrak{p})[X]$ is a domain so $\mathfrak{p}[X]$ is a prime. But $(R / \mathfrak{p})[X]$ is never a field so $\mathfrak{m}[X]$ is not maximal.
(b): Let $\alpha=\sqrt{-5}$.

$$
\begin{aligned}
(2,1+\alpha)(3,1-\alpha) & =(6,2-2 \alpha, 3+3 \alpha, 6) \\
& =(6,2-2 \alpha, 3+3 \alpha) \\
& =(6,2-2 \alpha, 5+\alpha) \\
& =(6,2-2 \alpha, 1-\alpha) \\
& =(1-\alpha)
\end{aligned}
$$

where in line 3 added the last two gens of line 2 , in line 4 subtracted last gen from the first. Finally $2-2 \alpha=2(1-\alpha)$ and $6=(1+\alpha)(1-\alpha)$ so we conclude what we wanted.
(c): Take $\pi: R \rightarrow R / I$. Know that if J is an ideal of R / I then $\pi^{*}(J)=\pi^{-1}(J)$ is an ideal of R which necessarily contains $I=$ ker $p i$. Moreover, π^{*} takes prime ideals to prime ideals. Also $R / \pi^{*}(J) \cong \operatorname{Im} \bar{\pi}$ and
overline π is surjective since π is. Thus $R / \pi^{*}(J) \cong(R / I) / J$ so if J is maximal then $\pi^{*}(J)$ is maximal. If J is an ideal of R containing I then $\pi_{*}(J)=\pi(J) R / I=(J / I)(R / I)=J / I=\pi(J)$ and $R / J \cong$ $(R / I) /(J / I)$ so again $\pi_{*}(J)$ is prime/maximal iff J is prime/maximal. Finally, $\pi^{*} \pi_{*}(J)=\pi^{-1}(J / I)=$ $J+I=J$ and $\pi_{*} \pi^{*}(J)=\pi \pi^{-1}(J)=J$ so the maps π^{*} and π_{*} are bijections.
2. Let R be a commutative ring. A minimal prime ideal in R is a prime ideal \mathfrak{p} such that if $\mathfrak{q} \subset \mathfrak{p}$ is a prime ideal of R then $\mathfrak{q}=\mathfrak{p}$. Show that every prime ideal \mathfrak{p} contains a nonzero minimal prime ideal. [Hint: Zorn's lemma.]

Proof. Let S be the set of prime ideals $\mathfrak{q} \subset \mathfrak{p}$. Since $\mathfrak{p} \in S$ the set S is nonempty. Partially order the set S wrt inclusion, i.e., $\mathfrak{q}<\mathfrak{q}^{\prime}$ if $\mathfrak{q} \supset \mathfrak{q}^{\prime}$. Suppose T is an ascending chain in S. Let $\mathfrak{q}_{T}=\cap_{\mathfrak{q} \in T} \mathfrak{q}$. Then \mathfrak{q}_{T} is an ideal (any intersection of ideals is an ideal). Suppose $x y \in \mathfrak{q}_{T}$. Then $x y \in \mathfrak{q}$ for any $\mathfrak{q} \in T$ and
so one of x or y is in \mathfrak{q}. Suppose $y \notin \mathfrak{q}_{T}$. The $y \notin \mathfrak{q}$ for some $\mathfrak{q} \in T$ and so $y \notin \mathfrak{q}^{\prime}$ for any $\mathfrak{q}^{\prime} \in T$ such that $\mathfrak{q} \supset \mathfrak{q}^{\prime}$. This implies that $x \in \mathfrak{q}^{\prime}$ and so $x \in \mathfrak{q}_{T}$. Thus \mathfrak{q}_{T} is a prime ideal.
We conclude, using Zorn's lemma, that S has a maximal element and so \mathfrak{p} contains a minimal prime ideal.
3. (a) Let $I, J, \mathfrak{a} \subset R$ be ideals such that $\mathfrak{a} \subset I \cup J$ show that $\mathfrak{a} \subset I$ or $\mathfrak{a} \subset J$.
(b) Suppose \mathfrak{p} is a prime ideal of R and $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n} \subset R$ are ideals such that $\cap \mathfrak{a}_{i} \subset \mathfrak{p}$. Show that $\mathfrak{a}_{i} \subset \mathfrak{p}$ for some i.

Proof. (a): Suppose \mathfrak{a} is not in I or J. Then pick $x \in \mathfrak{a}-I$ and $y \in \mathfrak{a}-J$ in which case, since $\mathfrak{a} \subset I \cup J$ we deduce that $x \in J$ and $y \in I$. Now $x+y \in \mathfrak{a} \subset I \cup J$. If $x+y \in I$ we deduce that $x \in I$ as well, a contradiction. Similarly for $x+y \in J$.
(b): Suppose we can find $x_{i} \in \mathfrak{a}_{i}-\mathfrak{p}$. Then $\prod x_{i} \in \cap \mathfrak{a}_{i} \subset \mathfrak{p}$ and so $\prod x_{i} \in \mathfrak{p}$. But this cannot be since \mathfrak{p} is a prime ideal and we'd get that one of the x_{i} is in \mathfrak{p}.
4. Let $\mathfrak{a}, \mathfrak{b} \subset R$ be ideals. Define the ideal quotient $(\mathfrak{a}: \mathfrak{b})=\{x \in R \mid x \mathfrak{b} \subset \mathfrak{a}\}$.
(a) Show that $(\mathfrak{a}: \mathfrak{b})$ is an ideal of R.
(b) Show that $(\mathfrak{a}: \mathfrak{b}) \mathfrak{b} \subset \mathfrak{a} \subset(\mathfrak{a}: \mathfrak{b})$ and that if \mathfrak{c} is another ideal then $((\mathfrak{a}: \mathfrak{b}): \mathfrak{c})=(\mathfrak{a}: \mathfrak{b} \mathfrak{c})$.
(c) If $m, n \in \mathbb{Z}-0$ compute $((m):(n))$ as an ideal of \mathbb{Z}.
(d) Compute $((2, X):(3, X)),((6, X):(2, X))$ and $((6):(3, X))$ in $\mathbb{Z}[X]$.

Proof. (a): Pick $x, y \in(\mathfrak{a}: \mathfrak{b})$ and $r \in R$. Then $x \mathfrak{b} \subset \mathfrak{a}$ and $y \mathfrak{b} \subset \mathfrak{a}$. But $(x+r y) \mathfrak{b}=x \mathfrak{b}+r y \mathfrak{b} \subset$ $\mathfrak{a}+r \mathfrak{a}=\mathfrak{a}$ and so $x+y r \in(\mathfrak{a}: \mathfrak{b})$ so the quotient is an ideal.
(b): If $x \in \mathfrak{a}$ then $x \mathfrak{b} \subset \mathfrak{a}$ immediately as \mathfrak{a} is an ideal. That $(\mathfrak{a}: \mathfrak{b}) \mathfrak{b} \subset \mathfrak{a}$ follows from the definition. Now suppose $x \in R$ such that $x \mathfrak{c} \subset(\mathfrak{a}: \mathfrak{b})$. Thus $x \mathfrak{c b} \subset \mathfrak{a}$ which implies $x \in(\mathfrak{a}: \mathfrak{b} \mathfrak{c})$. The converse is identical.
(c): See $a \in \mathbb{Z}$ such that $(a)(n) \subset(m)$, i.e., $m \mid n a$. Dividing by (m, n) this is equivalent to $m /(m, n) \mid$ $n /(m, n) a$ and since $m /(m, n)$ and $n /(m, n)$ are coprime it must be that $m /(m, n) \mid a$. Thus (m): $(n))=(m /(m, n))$.
(d): You can do this explicitly but here is a better way. If $I \subset R$ and $\mathfrak{a}, \mathfrak{b}$ contain I then I claim that $(\mathfrak{a}: \mathfrak{b})$ is the preimage of $(\mathfrak{a} / I: \mathfrak{b} / I)$ under the projection $R \rightarrow R / I$. Indeed, if $x \mathfrak{b} \subset \mathfrak{a}$ then immediately $x \mathfrak{b} / I \subset \mathfrak{a} / I$. If $(x+I) \mathfrak{b} / I \subset \mathfrak{a} / I$ it follows that $x \mathfrak{b} \subset \mathfrak{a}+I=\mathfrak{a}$.
First we apply the observation to $I=(X)$. Thus $((2, X):(3, X))$ is the preimage in $\mathbb{Z}[X]$ of $((2):(3))$ in $\mathbb{Z}=\mathbb{Z}[X] /(X)$. But this is (2) from the previous part. Thus $((2, X):(3, X))=(2, X)$. Similarly $((6, X):(2, X))=\pi^{-1}(((6):(2)))=\pi^{-1}((3))=(3, X)$.

$$
\begin{aligned}
((6):(3, X)) & =\{P(X) \mid P(X)(3, X) \subset(6)\} \\
& =\{P(X) \mid P(3 Q+X R) \subset 6 \mathbb{Z}[X], \forall Q, R\}
\end{aligned}
$$

In particular this should be true for $Q=0, R=1$ so $6 \mid P X$ which implies $6 \mid P$. Thus $((6):(3, X)) \subset$ $(6) \subset((6):(3, X))$ so $((6):(3, X))=(6)$.
5. (a) Show that $P(X)=a_{0}+a_{1} X+a_{2} X^{2}+\cdots \in R \llbracket X \rrbracket$ is invertible if and only if $a_{0} \in R^{\times}$.
(b) Show that in any commutative ring the sum of a unit and a nilpotent is a unit.
(c) Show that $P(X)=a_{0}+a_{1} X+\cdots+a_{n} X^{n} \in R[X]$ is invertible if and only if $a_{0} \in R^{\times}$and a_{1}, \ldots, a_{n} are nilpotent. [Hint: If $g(X)=b_{0}+b_{1} X+\cdots+b_{m} X^{m}$ is its inverse show that $a_{n}^{r+1} b_{m-r}=0$ for all $0 \leq r \leq m$ by induction. Then use the previous part.]
(d) Show that $P(X)$ is nilpotent if and only if a_{0}, \ldots, a_{n} are all nilpotent.
(e) Show that in $R[X]$ the nilradical is the same as the Jacobson radical.
(f) Compute $\sqrt{\left(x y, y^{3}\right)}$ in $\mathbb{C}[x, y]$ and $\sqrt{(108)}$ in \mathbb{Z}.

Proof. (a): If $Q(X)=b_{0}+b_{1} X+\cdots$ then

$$
P(X) Q(X)=\sum_{i, j} a_{i} b_{j} X^{i+j}=\sum_{n} X^{n} \sum_{i+j=n} a_{i} b_{j}
$$

Thus $P Q=1$ yields iff

$$
\begin{aligned}
a_{0} b_{0} & =1 \\
a_{1} b_{0}+a_{0} b_{1} & =0
\end{aligned}
$$

If P is invertible the first condition implies $a_{0} \in R^{\times}$. Now suppose $a_{0} \in R^{\times}$. Then we can iteratively compute

$$
b_{n}=-a_{0}^{-1}\left(a_{n} b_{0}+\cdots+a_{1} b_{n-1}\right)
$$

and so we can produce Q as an inverse of P.
(b): Suppose $x \in R^{\times}$and $u^{n}=0$. Then

$$
\begin{aligned}
\frac{1}{x+u} & =\frac{u^{-1}}{1+x u^{-1}} \\
& =u^{-1} \sum_{k \geq 0}\left(x u^{-1}\right)^{k} \\
& =u^{-1}\left(1+\left(x u^{-1}\right)+\left(x u^{-1}\right)^{2}+\cdots+\left(x u^{-1}\right)^{n-1}\right)
\end{aligned}
$$

since $u^{n}=0$ the inverse is truncated.
(c): Have

$$
P(X) Q(X)=a_{n} b_{m} X^{m+n}+\left(a_{n} b_{m-1}+a_{n-1} b_{m}\right) X^{m+n-1}+\cdots
$$

The base case is $r=0$ and immediately $a_{n} b_{m}=0$ as $P Q=1$. Suppose $a_{n}^{r} b_{m-r+1}=0$ for some $0 \leq r \leq m$. We'd like to deduce it for r. Look at the coefficient of X^{m+n-r} of degree $\geq n$. The coefficient vanishes and so

$$
a_{n} b_{m-r}+a_{n-1} b_{m-r+1}+\cdots=0
$$

and multiplying with a_{n}^{r} we get

$$
a_{n}^{r+1} b_{m-r}+\sum a_{n-i} a_{n}^{r} b_{m-(r-i)}=0
$$

The inductive hypothesis implies that only the first term survives and so $a_{n}^{r+1} b_{m-r}=0$.
For $r=m$ we deduce that $a_{n}^{m+1}=0$ so a_{n} is nilpotent.
We now show the statement by induction on $\operatorname{deg} P$. If $P(X)$ is invertible then we know that a_{n} and so also $a_{n} X^{n}$ is nilpotent so by the previous part $P(X)-a_{n} X^{n}$ is invertible of degree $n-1$. By the inductive hypothesis we deduce that a_{0} is invertible and a_{1}, \ldots, a_{n-1} are nilpotent.

Now suppose a_{0} is invertible and a_{i} is nilpotent for $i \geq 1$. Then $a_{i} X^{i}$ are nilpotent so $a_{1} X+\cdots+a_{n} X^{n}$ is nilpotent. Again the previous part then implies that adding the unit a_{0} gives P is invertible.
(d): If a_{i} are nilpotent then $a_{i} X^{i}$ are and so their sum P is nilpotent. If P is nilpotent then $X P(X)$ is nilpotent so $1+X P(X)$ is a unit and we can use the previous part.
(e): We know that $\operatorname{Nil}(R[X]) \subset J(R[X])$ so we need that if $P(X)$ is in the Jacobson radical then it is nilpotent. But then for all polynomials $Q, 1-P Q$ is a unit. For $Q=X$ we deduce that a_{i} are all nilpotent so P is nilpotent as desired.
(d): Seek polynomials $P(x, y)$ such that $P(x, y)^{n} \in\left(x y, y^{3}\right)$ for some n. Then $y \mid P^{n}$ and so $y \mid P$. If $P=y Q$ then $P^{3}=y^{3} Q^{3} \in\left(x y, y^{3}\right)$ so $\sqrt{\left(x y, y^{3}\right)}=(y)$.

Seek $n \in \mathbb{Z}$ such that n^{k} is divisible by $108=2^{2} \cdot 3^{3}$. But then n is divisible by 2 and 3 and so by 6 . If $n=6 m$ then $n^{3}=216 m^{3}$ is divisible by 108. So $\sqrt{(108)}=(6)$.

