
Graduate Algebra

Homework 8

Fall 2014

Due 2014-11-12 at the beginning of class

Throughout this problem set R is a commutative ring. Recall that p ⊂ R is a prime ideal if p 6= R and
R/p is an integral domain, and m ⊂ R is a maximal ideal if m 6= R and R/m is a field.

1. Let R be a commutative ring.

(a) If p is a prime ideal of R show that p[X] ⊂ R[X] is a prime ideal. Is m[X] ⊂ R[X] a maximal
ideal for a prime ideal m of R?

(b) Suppose
√
−5 ∈ R. Show that (2, 1 +

√
−5)(3, 1−

√
−5) = (1−

√
−5) as ideals.

(c) Let I ⊂ R be an ideal. Show that there exists a bijection between the set of all/prime/maximal
ideals of R containing I and the set of all/prime/maximal ideals of R/I.

Proof. (a): R[X]/p[X] ∼= (R/p)[X]. p is prime so R/p is a domain so (R/p)[X] is a domain so p[X] is
a prime. But (R/p)[X] is never a field so m[X] is not maximal.

(b): Let α =
√
−5.

(2, 1 + α)(3, 1− α) = (6, 2− 2α, 3 + 3α, 6)

= (6, 2− 2α, 3 + 3α)

= (6, 2− 2α, 5 + α)

= (6, 2− 2α, 1− α)

= (1− α)

where in line 3 added the last two gens of line 2, in line 4 subtracted last gen from the first. Finally
2− 2α = 2(1− α) and 6 = (1 + α)(1− α) so we conclude what we wanted.

(c): Take π : R→ R/I. Know that if J is an ideal of R/I then π∗(J) = π−1(J) is an ideal of R which
necessarily contains I = ker pi. Moreover, π∗ takes prime ideals to prime ideals. Also R/π∗(J) ∼= Imπ
and
overlineπ is surjective since π is. Thus R/π∗(J) ∼= (R/I)/J so if J is maximal then π∗(J) is maximal.
If J is an ideal of R containing I then π∗(J) = π(J)R/I = (J/I)(R/I) = J/I = π(J) and R/J ∼=
(R/I)/(J/I) so again π∗(J) is prime/maximal iff J is prime/maximal. Finally, π∗π∗(J) = π−1(J/I) =
J + I = J and π∗π

∗(J) = ππ−1(J) = J so the maps π∗ and π∗ are bijections.

2. Let R be a commutative ring. A minimal prime ideal in R is a prime ideal p such that if q ⊂ p is
a prime ideal of R then q = p. Show that every prime ideal p contains a nonzero minimal prime ideal.
[Hint: Zorn’s lemma.]

Proof. Let S be the set of prime ideals q ⊂ p. Since p ∈ S the set S is nonempty. Partially order the
set S wrt inclusion, i.e., q < q′ if q ⊃ q′. Suppose T is an ascending chain in S. Let qT = ∩q∈T q. Then
qT is an ideal (any intersection of ideals is an ideal). Suppose xy ∈ qT . Then xy ∈ q for any q ∈ T and
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so one of x or y is in q. Suppose y /∈ qT . The y /∈ q for some q ∈ T and so y /∈ q′ for any q′ ∈ T such
that q ⊃ q′. This implies that x ∈ q′ and so x ∈ qT . Thus qT is a prime ideal.

We conclude, using Zorn’s lemma, that S has a maximal element and so p contains a minimal prime
ideal.

3. (a) Let I, J, a ⊂ R be ideals such that a ⊂ I ∪ J show that a ⊂ I or a ⊂ J .

(b) Suppose p is a prime ideal of R and a1, . . . , an ⊂ R are ideals such that ∩ai ⊂ p. Show that ai ⊂ p
for some i.

Proof. (a): Suppose a is not in I or J . Then pick x ∈ a− I and y ∈ a−J in which case, since a ⊂ I ∪J
we deduce that x ∈ J and y ∈ I. Now x+ y ∈ a ⊂ I ∪ J . If x+ y ∈ I we deduce that x ∈ I as well, a
contradiction. Similarly for x+ y ∈ J .

(b): Suppose we can find xi ∈ ai − p. Then
∏
xi ∈ ∩ai ⊂ p and so

∏
xi ∈ p. But this cannot be since

p is a prime ideal and we’d get that one of the xi is in p.

4. Let a, b ⊂ R be ideals. Define the ideal quotient (a : b) = {x ∈ R|xb ⊂ a}.

(a) Show that (a : b) is an ideal of R.

(b) Show that (a : b)b ⊂ a ⊂ (a : b) and that if c is another ideal then ((a : b) : c) = (a : bc).

(c) If m,n ∈ Z− 0 compute ((m) : (n)) as an ideal of Z.

(d) Compute ((2, X) : (3, X)), ((6, X) : (2, X)) and ((6) : (3, X)) in Z[X].

Proof. (a): Pick x, y ∈ (a : b) and r ∈ R. Then xb ⊂ a and yb ⊂ a. But (x + ry)b = xb + ryb ⊂
a + ra = a and so x+ yr ∈ (a : b) so the quotient is an ideal.

(b): If x ∈ a then xb ⊂ a immediately as a is an ideal. That (a : b)b ⊂ a follows from the definition.
Now suppose x ∈ R such that xc ⊂ (a : b). Thus xcb ⊂ a which implies x ∈ (a : bc). The converse is
identical.

(c): See a ∈ Z such that (a)(n) ⊂ (m), i.e., m | na. Dividing by (m,n) this is equivalent to m/(m,n) |
n/(m,n)a and since m/(m,n) and n/(m,n) are coprime it must be that m/(m,n) | a. Thus ((m) :
(n)) = (m/(m,n)).

(d): You can do this explicitly but here is a better way. If I ⊂ R and a, b contain I then I claim
that (a : b) is the preimage of (a/I : b/I) under the projection R → R/I. Indeed, if xb ⊂ a then
immediately xb/I ⊂ a/I. If (x+ I)b/I ⊂ a/I it follows that xb ⊂ a + I = a.

First we apply the observation to I = (X). Thus ((2, X) : (3, X)) is the preimage in Z[X] of ((2) : (3))
in Z = Z[X]/(X). But this is (2) from the previous part. Thus ((2, X) : (3, X)) = (2, X). Similarly
((6, X) : (2, X)) = π−1(((6) : (2))) = π−1((3)) = (3, X).

((6) : (3, X)) = {P (X)|P (X)(3, X) ⊂ (6)}
= {P (X)|P (3Q+XR) ⊂ 6Z[X],∀Q,R}

In particular this should be true for Q = 0, R = 1 so 6 | PX which implies 6 | P . Thus ((6) : (3, X)) ⊂
(6) ⊂ ((6) : (3, X)) so ((6) : (3, X)) = (6).

5. (a) Show that P (X) = a0 + a1X + a2X
2 + · · · ∈ R[[X]] is invertible if and only if a0 ∈ R×.

(b) Show that in any commutative ring the sum of a unit and a nilpotent is a unit.

(c) Show that P (X) = a0+a1X+· · ·+anXn ∈ R[X] is invertible if and only if a0 ∈ R× and a1, . . . , an
are nilpotent. [Hint: If g(X) = b0 + b1X + · · ·+ bmX

m is its inverse show that ar+1
n bm−r = 0 for

all 0 ≤ r ≤ m by induction. Then use the previous part.]
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(d) Show that P (X) is nilpotent if and only if a0, . . . , an are all nilpotent.

(e) Show that in R[X] the nilradical is the same as the Jacobson radical.

(f) Compute
√

(xy, y3) in C[x, y] and
√

(108) in Z.

Proof. (a): If Q(X) = b0 + b1X + · · · then

P (X)Q(X) =
∑
i,j

aibjX
i+j =

∑
n

Xn
∑

i+j=n

aibj

Thus PQ = 1 yields iff

a0b0 = 1

a1b0 + a0b1 = 0

...

If P is invertible the first condition implies a0 ∈ R×. Now suppose a0 ∈ R×. Then we can iteratively
compute

bn = −a−10 (anb0 + · · ·+ a1bn−1)

and so we can produce Q as an inverse of P .
(b): Suppose x ∈ R× and un = 0. Then

1

x+ u
=

u−1

1 + xu−1

= u−1
∑
k≥0

(xu−1)k

= u−1(1 + (xu−1) + (xu−1)2 + · · ·+ (xu−1)n−1)

since un = 0 the inverse is truncated.
(c): Have

P (X)Q(X) = anbmX
m+n + (anbm−1 + an−1bm)Xm+n−1 + · · ·

The base case is r = 0 and immediately anbm = 0 as PQ = 1. Suppose arnbm−r+1 = 0 for some 0 ≤ r ≤ m.
We’d like to deduce it for r. Look at the coefficient of Xm+n−r of degree ≥ n. The coefficient vanishes and
so

anbm−r + an−1bm−r+1 + · · · = 0

and multiplying with arn we get

ar+1
n bm−r +

∑
an−ia

r
nbm−(r−i) = 0

The inductive hypothesis implies that only the first term survives and so ar+1
n bm−r = 0.

For r = m we deduce that am+1
n = 0 so an is nilpotent.

We now show the statement by induction on degP . If P (X) is invertible then we know that an and so
also anX

n is nilpotent so by the previous part P (X)− anXn is invertible of degree n− 1. By the inductive
hypothesis we deduce that a0 is invertible and a1, . . . , an−1 are nilpotent.

Now suppose a0 is invertible and ai is nilpotent for i ≥ 1. Then aiX
i are nilpotent so a1X + · · ·+ anX

n

is nilpotent. Again the previous part then implies that adding the unit a0 gives P is invertible.
(d): If ai are nilpotent then aiX

i are and so their sum P is nilpotent. If P is nilpotent then XP (X) is
nilpotent so 1 +XP (X) is a unit and we can use the previous part.

(e): We know that Nil(R[X]) ⊂ J(R[X]) so we need that if P (X) is in the Jacobson radical then it is
nilpotent. But then for all polynomials Q, 1− PQ is a unit. For Q = X we deduce that ai are all nilpotent
so P is nilpotent as desired.
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(d): Seek polynomials P (x, y) such that P (x, y)n ∈ (xy, y3) for some n. Then y | Pn and so y | P . If
P = yQ then P 3 = y3Q3 ∈ (xy, y3) so

√
(xy, y3) = (y).

Seek n ∈ Z such that nk is divisible by 108 = 22 · 33. But then n is divisible by 2 and 3 and so by 6. If
n = 6m then n3 = 216m3 is divisible by 108. So

√
(108) = (6).
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