Graduate Algebra Homework 9

Fall 2014
Due 2014-11-19 at the beginning of class

1. Let R be a PID. Throughout this exercise, $\pi \in R$ represents a prime element, $P(X) \in R[X]$ is an irreducible polynomial and $Q(X) \in R[X]$ is a polynomial whose image in $R /(\pi)[X]$ is irreducible.
(a) Show that $(\pi),(P(X))$ and $(\pi, Q(X))$ are prime ideals of $R[X]$.
(b) Let \mathfrak{p} be a prime ideal of $R[X]$. Show that $\mathfrak{p} \cap R$ is either 0 or (π).
(c) If $\mathfrak{p} \cap R=(0)$ show that \mathfrak{p} is either 0 or some $(P(X))$. [Hint: Show that \mathfrak{p} gives a prime ideal of $R[X]$ localized at the multiplicative set $R-0$. What is this localization?]
(d) If $\mathfrak{p} \cap R=(\pi)$ show that either $\mathfrak{p}=(\pi)$ or $\mathfrak{p}=(\pi, Q(X))$ for some π and $Q(X)$. [Hint: Look at $R[X] /(\pi) R[X]$.
(e) What are the prime and maximal ideals of $\mathbb{Z}[X]$?
2. Let $R=\mathbb{C}[X, Y]$. [Hint: This is an application of the previous problem.]
(a) Show that the prime ideals of $\mathbb{C}[X, Y]$ are (0), $(P(X, Y))$ for an irreducible $P(X, Y) \in \mathbb{C}[X, Y]$ and $(X-a, Y-b)$ for some $a, b \in \mathbb{C}$. Show that the maximal ideals are $(X-a, Y-b)$.
(b) Show that $\mathfrak{p}=\left(Y^{2}-X^{3}-X^{2}\right)$ is a prime ideal and that if $a, b \in \mathbb{C}$ such that $b^{2}=a^{3}+a^{2}$ then $\mathfrak{p} \subset(X-a, Y-b)$.
(c) Let $\mathfrak{q}=(X-a, Y-b)$. Show that the prime ideals of the localization $R_{\mathfrak{q}}$ are: (0), $\mathfrak{q} R_{\mathfrak{q}}$ and $(P(X, Y)) R_{\mathfrak{q}}$ for any irreducible polynomial $P(X, Y) \in \mathbb{C}[X, Y]$ such that $P(a, b)=0$.
3. Consider the ring $\mathbb{Z}\left[\zeta_{3}\right]$.
(a) Show that $\mathbb{Z}\left[\zeta_{3}\right]$ is a Euclidean domain. [Hint: Mimick the proof from the $\mathbb{Z}[i]$ case.]
(b) Show that the units are $\mathbb{Z}\left[\zeta_{3}\right]^{\times}=\left\{ \pm 1, \pm \zeta_{3}, \pm \zeta_{3}^{2}\right\}$. [Hint: Show that $z \in \mathbb{Z}\left[\zeta_{3}\right]$ is a unit iff $|z|=1$.]
4. Let R be a commutative ring. A commutative ring is said to be reduced if it has no nonzero nilpotent elements.
(a) Suppose that for every prime ideal \mathfrak{p} the localization $R_{\mathfrak{p}}$ is reduced. Show that R is reduced. [Hint: For a given x look at $\{y \mid x y=0\}$.]
(b) Show that $R=\mathbb{Z} / 6 \mathbb{Z}$ is not an integral domain but each localization $R_{\mathfrak{p}}$ is an integral domain.
5. Let R be a commutative ring. A proper (i.e., not 0 or R) ideal I of R is said to be good if the image of $R^{\times} \cup 0$ in R / I is all of R / I.
(a) Suppose R is a PID with no proper good ideals. Show that R cannot be a Euclidean domain. [Hint: Otherwise, among the proper ideals $I=(a)$ of R choose one with $d(a)$ minimal. Show that I is good.]
(b) You may assume that the ring $R=\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a PID, that $R^{\times}=\{ \pm 1\}$, and that 2 and 3 are prime in R. Show that R is not a Euclidean domain. [Hint: Are there good ideals?]
