Graduate Algebra Homework 9

Fall 2014

Due 2014-11-19 at the beginning of class

- 1. Let R be a PID. Throughout this exercise, $\pi \in R$ represents a prime element, $P(X) \in R[X]$ is an irreducible polynomial and $Q(X) \in R[X]$ is a polynomial whose image in $R/(\pi)[X]$ is irreducible.
 - (a) Show that (π) , (P(X)) and $(\pi, Q(X))$ are prime ideals of R[X].
 - (b) Let \mathfrak{p} be a prime ideal of R[X]. Show that $\mathfrak{p} \cap R$ is either 0 or (π) .
 - (c) If $\mathfrak{p} \cap R = (0)$ show that \mathfrak{p} is either 0 or some (P(X)). [Hint: Show that \mathfrak{p} gives a prime ideal of R[X] localized at the multiplicative set R 0. What is this localization?]
 - (d) If $\mathfrak{p} \cap R = (\pi)$ show that either $\mathfrak{p} = (\pi)$ or $\mathfrak{p} = (\pi, Q(X))$ for some π and Q(X). [Hint: Look at $R[X]/(\pi)R[X]$.]
 - (e) What are the prime and maximal ideals of $\mathbb{Z}[X]$?
- 2. Let $R = \mathbb{C}[X, Y]$. [Hint: This is an application of the previous problem.]
 - (a) Show that the prime ideals of $\mathbb{C}[X, Y]$ are (0), (P(X, Y)) for an irreducible $P(X, Y) \in \mathbb{C}[X, Y]$ and (X - a, Y - b) for some $a, b \in \mathbb{C}$. Show that the maximal ideals are (X - a, Y - b).
 - (b) Show that $\mathfrak{p} = (Y^2 X^3 X^2)$ is a prime ideal and that if $a, b \in \mathbb{C}$ such that $b^2 = a^3 + a^2$ then $\mathfrak{p} \subset (X a, Y b)$.
 - (c) Let $\mathbf{q} = (X a, Y b)$. Show that the prime ideals of the localization $R_{\mathbf{q}}$ are: (0), $\mathbf{q}R_{\mathbf{q}}$ and $(P(X, Y))R_{\mathbf{q}}$ for any irreducible polynomial $P(X, Y) \in \mathbb{C}[X, Y]$ such that P(a, b) = 0.
- 3. Consider the ring $\mathbb{Z}[\zeta_3]$.
 - (a) Show that $\mathbb{Z}[\zeta_3]$ is a Euclidean domain. [Hint: Mimick the proof from the $\mathbb{Z}[i]$ case.]
 - (b) Show that the units are $\mathbb{Z}[\zeta_3]^{\times} = \{\pm 1, \pm \zeta_3, \pm \zeta_3^2\}$. [Hint: Show that $z \in \mathbb{Z}[\zeta_3]$ is a unit iff |z| = 1.]
- 4. Let R be a commutative ring. A commutative ring is said to be **reduced** if it has no nonzero nilpotent elements.
 - (a) Suppose that for every prime ideal \mathfrak{p} the localization $R_{\mathfrak{p}}$ is reduced. Show that R is reduced. [Hint: For a given x look at $\{y|xy=0\}$.]
 - (b) Show that $R = \mathbb{Z}/6\mathbb{Z}$ is not an integral domain but each localization $R_{\mathfrak{p}}$ is an integral domain.
- 5. Let R be a commutative ring. A proper (i.e., not 0 or R) ideal I of R is said to be **good** if the image of $R^{\times} \cup 0$ in R/I is all of R/I.
 - (a) Suppose R is a PID with no proper good ideals. Show that R cannot be a Euclidean domain. [Hint: Otherwise, among the proper ideals I = (a) of R choose one with d(a) minimal. Show that I is good.]
 - (b) You may assume that the ring $R = \mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a PID, that $R^{\times} = \{\pm 1\}$, and that 2 and 3 are prime in R. Show that R is not a Euclidean domain. [Hint: Are there good ideals?]