# Graduate Algebra Homework 9 

Fall 2014

## Due 2014-11-19 at the beginning of class

1. Let $R$ be a PID. Throughout this exercise, $\pi \in R$ represents a prime element, $P(X) \in R[X]$ is an irreducible polynomial and $Q(X) \in R[X]$ is a polynomial whose image in $R /(\pi)[X]$ is irreducible.
(a) Show that $(\pi),(P(X))$ and $(\pi, Q(X))$ are prime ideals of $R[X]$.
(b) Let $\mathfrak{p}$ be a prime ideal of $R[X]$. Show that $\mathfrak{p} \cap R$ is either 0 or ( $\pi$ ).
(c) If $\mathfrak{p} \cap R=(0)$ show that $\mathfrak{p}$ is either 0 or some $(P(X))$. [Hint: Show that $\mathfrak{p}$ gives a prime ideal of $R[X]$ localized at the multiplicative set $R-0$. What is this localization?]
(d) If $\mathfrak{p} \cap R=(\pi)$ show that either $\mathfrak{p}=(\pi)$ or $\mathfrak{p}=(\pi, Q(X)$ ) for some $\pi$ and $Q(X)$. [Hint: Look at $R[X] /(\pi) R[X]$.
(e) What are the prime and maximal ideals of $\mathbb{Z}[X]$ ?

Proof. (a): ( $\pi$ ) is prime from h1. $(P(X))$ is prime because $R$ is a PID so a UFD and so $R[X]$ is a UFD and in a UFD every irreducible is prime. Finally, $R[X] /(\pi, Q) \cong(R[X] /(\pi)) /((\pi, Q) /(\pi)) \cong$ $(R /(\pi))[X] /(Q \bmod \pi)$. Now $R /(\pi)$ is a PID (by h1 every ideal of $R /(\pi))$ is the same as an ideal of $R$ containing $(\pi))$ and so it is a UFD so $(R /(\pi))[X]$ is a UFD in which the irreducible $Q(X) \bmod \pi$ is prime. Thus $R[X] /(\pi, Q)$ is an integral domain so $(\pi, Q)$ is a prime ideal.
(b): Consider $i: R \rightarrow R[X]$. Then $\mathfrak{p} \cap R=i^{*}(\mathfrak{p})$ which is a prime ideal of $R . R$ is a PID so $\mathfrak{p} \cap R=(0)$ of ( $\pi$ ) for some $\pi \in R$ nonzero.
(c): $R$ is a PID so $S=R-0$ is multiplicatively closed. Since $\mathfrak{p} \cap R=0$ then $\mathfrak{p} \cap S=\emptyset$ so $\mathfrak{p}$ yields a prime ideal $S^{-1} \mathfrak{p}$ of $S^{-1} R[X]=\operatorname{Frac} R[X]$. But Frac $R[X]$ is a PID as Frac $R$ is a field so $S^{-1} \mathfrak{p}=(T(X))$ for some $T \in \operatorname{Frac} R[X]$ either 0 or irreducible. If $T=0$ then $S^{-1} \mathfrak{p}=0$ and so $\mathfrak{p}=0$. If $T$ is irreducible in Frac $R[X]$, let $\alpha \in \operatorname{Frac} R$ such that $P=\alpha T \in R[X]$ with coprime coefficients. (Take $\alpha$ the gcd of the denominators of the coefficients of $T$ divided by the gcd of the numerators of the coefficients of $T$.)
Then $S^{-1} \mathfrak{p}=(T)=(P)$ and so $\mathfrak{p}=\{Q(X) \mid Q(X) / 1 \in(P)\}$ so we seek $Q / 1=P U / r$ for $U \in R[X]$ and $r \in R-0$. But then for some $t \in R-0$ have $(Q r-P U) t=0$ and since $R[X]$ is an integral domain we get $Q r=P U$ so $P \mid Q r$. $P$ is irreducible in $R[X]$ because it is so in Frac $R[X]$ and its coefficients are coprime. Thus $(r, P)=(1)$ and so $P \mid Q$ which implies that $\mathfrak{p}=(P(X))$.
(d): Suppose $\mathfrak{p} \cap R=(\pi)$. The set of such $\mathfrak{p}$ is, by h1, in bijection with the prime ideals of $R[X] /(\pi)=$ $(R /(\pi))[X]$. But $R /(\pi)[X]$ is a PID and so UFD so its prime ideals are principal of the form $(Q(X))$ where $Q \in R[X]$ is either 0 or irreducible $\bmod \pi$. If 0 then $\mathfrak{p}=(\pi)$ and otherwise $\mathfrak{p}$ is the preimage $(\pi, Q(X))$ of $(Q(X))$.
(e): $\mathbb{Z}$ is a PID so its prime ideals are $(0),(p),(P(X))$ and $(p, Q(X))$ where $p$ is a prime, $P \in \mathbb{Z}[X]$ is irreducible and $Q(X) \in \mathbb{Z}[X]$ is irreducible $\bmod p$. Among these maximal are the $(p, Q)$. Indeed, in the other cases the quotient is not a field. Let's show that $\mathbb{Z}[X] /(p, Q(X)) \cong \mathbb{F}_{p}[X] /(Q(X))$ is a field. $\mathbb{F}_{p}$ is a field, $\mathbb{F}_{p}[X]$ is a PID and $(Q(X))$ is a prime ideal of this PID. It is contained in some maximal ideal $(T(X))$ with $T$ irreducible. But then $T$ divides $Q$ and by irreducibility of $Q$ we deduce that $Q=T$ so $(Q)$ is a maximal ideal of $\mathbb{F}_{p}[X]$.
2. Let $R=\mathbb{C}[X, Y]$. [Hint: This is an application of the previous problem.]
(a) Show that the prime ideals of $\mathbb{C}[X, Y]$ are $(0),(P(X, Y))$ for an irreducible $P(X, Y) \in \mathbb{C}[X, Y]$ and $(X-a, Y-b)$ for some $a, b \in \mathbb{C}$. Show that the maximal ideals are $(X-a, Y-b)$.
(b) Show that $\mathfrak{p}=\left(Y^{2}-X^{3}-X^{2}\right)$ is a prime ideal and that if $a, b \in \mathbb{C}$ such that $b^{2}=a^{3}+a^{2}$ then $\mathfrak{p} \subset(X-a, Y-b)$.
(c) Let $\mathfrak{q}=(X-a, Y-b)$. Show that the prime ideals of the localization $R_{\mathfrak{q}}$ are: ( 0 ), $\mathfrak{q} R_{\mathfrak{q}}$ and $(P(X, Y)) R_{\mathfrak{q}}$ for any irreducible polynomial $P(X, Y) \in \mathbb{C}[X, Y]$ such that $P(a, b)=0$.

Proof. (a): $\mathbb{C}[X]$ a PID then the previous problem yields the prime ideals of $\mathbb{C}[X, Y]:(0),(P(X))$ for an irreducible $P(X) \in \mathbb{C}[X],(P(X, Y))$ for an irreducible $P(X, Y) \in \mathbb{C}[X, Y]$, and $(P(X), Q(X, Y))$ with $P$ irreducible and $Q(X, Y)$ irreducible in the quotient $\mathbb{C}[X, Y] /(P(X))$. But $P$ irreducible in $\mathbb{C}[X]$ implies $P(X)=X-a$ for some $a \in \mathbb{C}$ in which case $\mathbb{C}[X, Y] /(P(X))=\mathbb{C}[X, Y] /(X-a) \cong \mathbb{C}[Y]$ and thus $Q(X, Y)$ irreducible in $\mathbb{C}[Y]$ means it is of the form $Q \bmod P=Y-b$ for some $b \in \mathbb{C}$. Finally the list in the problem is complete as $X-a$ is an example of irreducible $P(X, Y)$.
(b): If $P(X, Y)=Y^{2}-X^{3}-X^{2}$ we need to show that $P(X, Y) \equiv 0(\bmod X-a, Y-b)$. But $Y \equiv b$ $(\bmod X-a, Y-b)$ and $X \equiv a\left(\bmod X_{a}, Y-b\right)$ and the conclusion follows.
(c): The prime ideals of the localization $R_{\mathfrak{q}}$ are in bijection with the prime ideals $\mathfrak{r}$ of $R$ such that $\mathfrak{r} \subset \mathfrak{q}$. Then $\mathfrak{r}$ is either ( 0 ), $(S(X, Y))$ for $S$ irreducible or $(X-c, Y-d)$, from the classification. In the second case need $S(X, Y)$ to be a linear combination of $X-a$ and $Y-b$ so $S(a, b)=0$. In the third case we need $c=a$ and $d=b$.
3. Consider the ring $\mathbb{Z}\left[\zeta_{3}\right]$.
(a) Show that $\mathbb{Z}\left[\zeta_{3}\right]$ is a Euclidean domain. [Hint: Mimick the proof from the $\mathbb{Z}[i]$ case.]
(b) Show that the units are $\mathbb{Z}\left[\zeta_{3}\right]^{\times}=\left\{ \pm 1, \pm \zeta_{3}, \pm \zeta_{3}^{2}\right\}$. [Hint: Show that $z \in \mathbb{Z}\left[\zeta_{3}\right]$ is a unit iff $|z|=1$.]

Proof. (a): Let $d(z)=|z|^{2}$. Pick $x, y \in \mathbb{Z}\left[\zeta_{3}\right]$ and let $q$ the element of $\mathbb{Z}\left[\zeta_{3}\right]$ closest in Euclidean distance to $x / y \in \mathbb{C}$. The elements of $\mathbb{Z}\left[\zeta_{3}\right] \subset \mathbb{C}$ form a lattice consisting of unit side length equilateral triangles. Thus $|x / y-q| \leq 1 / \sqrt{3}$ as inside an equilateral triangle of side 1 the farthest one can be from the closest vertex is by being in the center, at distance $1 / \sqrt{3}$. Take $r=x-q y \in \mathbb{Z}\left[\zeta_{3}\right]$ in which case $d(r)=|x-y q|^{2}=|y|^{2}|x / y-q|^{2} \leq d(y) / 3<d(y)$. We deduce that $d$ is a Euclidean function.
(b): If $u \in \mathbb{Z}\left[\zeta_{3}\right]^{\times}$then $u v=1$ so $|u|^{2}|v|^{2}=1$. But for $u=a+b \zeta_{3},|u|^{2}=a^{2}+a b+b^{2} \in \mathbb{Z}$ so $|u|^{2}=1$. Reciprocally, if $|u|=1$ it follows that $u \bar{u}=1$ and certainly $\bar{u} \in \mathbb{Z}\left[\zeta_{3}\right]$. We solve $|u|^{2}=a^{2}+a b+b^{2}=(a+b / 2)^{2}+3 b^{2} / 4=1$. On the LHS each square is positive and cannot be $>1$ so $3 b^{2} \leq 4$ so $b$ is either 0 or $\pm 1$. If $b=0$ then $a^{2}=1$ so $u=a+b \zeta_{3}= \pm 1$. If $b= \pm 1$ then we get $a^{2}+a b=0$ so $a=0$ or $a=-b$. Thus $u= \pm \zeta_{3}$ or $u= \pm\left(1+\zeta_{3}\right)= \pm \zeta_{3}^{2}$.
4. Let $R$ be a commutative ring. A commutative ring is said to be reduced if it has no nonzero nilpotent elements.
(a) Suppose that for every prime ideal $\mathfrak{p}$ the localization $R_{\mathfrak{p}}$ is reduced. Show that $R$ is reduced. [Hint: For a given $x$ look at $\{y \mid x y=0\}$ ?]
(b) Show that $R=\mathbb{Z} / 6 \mathbb{Z}$ is not an integral domain but each localization $R_{\mathfrak{p}}$ is an integral domain.

Proof. (a): If $0 \neq x \in \operatorname{Nil}(R)$ then $x^{n}=0$ for some $n$ so $x \in \operatorname{Nil}\left(R_{\mathfrak{p}}\right)$ for all prime ideals $\mathfrak{p}$ of $R$. Look at $A=\{y \in R \mid x y=0\}$. Then $A$ is an ideal. Since $x \neq 0$ it follows that $A \neq R$ and so it is contained in a maximal ideal $\mathfrak{m}$ of $R$. Then $x / 1=0$ in $R_{\mathfrak{m}}$ which implies that $x y=0$ for some $y \in R-\mathfrak{m}$ which contradicts the fact that $y \in A$.
(b): The prime ideals of $R=\mathbb{Z} / 6 \mathbb{Z}$ are (2) and (3) ((0) is not as $R$ is not a domain). Let's show, e.g, that $R_{(2)}$ is a domain, in fact a field. The elements are $\{a / b \mid a=0,1,2,3,4,5, b=1,3,5\}$. If $a=0,2,4$ then $a / b=(3 a) /(3 b)=0 / 3 b=0$ as $3 b \in\{1,3,5\}$ and so the nonzero elements of $R_{(2)}$ are $\{a / b \mid a, b=1,3,5\}$ which is visibly a group. The $R_{(3)}$ case is analogous.
5. Let $R$ be a commutative ring. A proper (i.e., not 0 or $R$ ) ideal $I$ of $R$ is said to be good if the image of $R^{\times} \cup 0$ in $R / I$ is all of $R / I$.
(a) Suppose $R$ is a PID with no proper good ideals. Show that $R$ cannot be a Euclidean domain. [Hint: Otherwise, among the proper ideals $I=(a)$ of $R$ choose one with $d(a)$ minimal. Show that $I$ is good.]
(b) You may assume that the ring $R=\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a PID, that $R^{\times}=\{ \pm 1\}$, and that 2 and 3 are prime in $R$. Show that $R$ is not a Euclidean domain. [Hint: Are there good ideals?]

Proof. (a): Let $I=(a)$ as in the hint. Pick $x \in R$ and write $x=q a+r$. If $x \in I$ then $x+I=I$ is the image of $0+I$ as desired. If $x \notin I$ then $r \neq 0$. Moreover, $d(r)<d(a)$ so the ideal $(r)$ cannot be proper as otherwise it would contradict the choice of $a$. Thus $(r)=R$ and so $r \in R^{\times}$. But then $x+I=r+I$ as desired.
(b): We show there are no good ideals. Suppose $I=(a)$ is good. Thus the image of $\{-1,0,1\}=R^{\times} \cup 0$ in $R /(a)$ is all of $R /(a)$. Take $2 \in R$. Then 2 is congruent $\bmod (a)$ to one of $-1,0,1$ and so $a$ divides one of $1,2,3$. Since $(a)$ is proper it cannot divide 1 . Thus $a \mid 2$ or $a \mid 3$ and so either $(a)=(2)$ or $(a)=(3)$.
Write $\alpha=\sqrt{-19}$. Then $(1+\alpha) / 2$ is congruent $\bmod (a)$ to one of $-1,0,1$. Thus $a$ must divide $w+(1+\alpha) / 2$ for $w \in\{-1,0,1\}$. It is elementary to see that neither 2 nor 3 divides any of these elements. Indeed, if $a(u+v(1+\alpha) / 2)=w+(1+\alpha) / 2$ then we deduce

$$
\begin{aligned}
a(u+v / 2) & =w+1 / 2 \\
a v / 2 & =1 / 2
\end{aligned}
$$

Since $a, v \in \mathbb{Z}$ it follows that $a$ must be invertible so neither 2 nor 3 works.

