
Graduate Algebra

Homework 9

Fall 2014

Due 2014-11-19 at the beginning of class

1. Let R be a PID. Throughout this exercise, π ∈ R represents a prime element, P (X) ∈ R[X] is an
irreducible polynomial and Q(X) ∈ R[X] is a polynomial whose image in R/(π)[X] is irreducible.

(a) Show that (π), (P (X)) and (π,Q(X)) are prime ideals of R[X].

(b) Let p be a prime ideal of R[X]. Show that p ∩R is either 0 or (π).

(c) If p ∩R = (0) show that p is either 0 or some (P (X)). [Hint: Show that p gives a prime ideal of
R[X] localized at the multiplicative set R− 0. What is this localization?]

(d) If p ∩ R = (π) show that either p = (π) or p = (π,Q(X)) for some π and Q(X). [Hint: Look at
R[X]/(π)R[X].]

(e) What are the prime and maximal ideals of Z[X]?

Proof. (a): (π) is prime from h1. (P (X)) is prime because R is a PID so a UFD and so R[X] is a
UFD and in a UFD every irreducible is prime. Finally, R[X]/(π,Q) ∼= (R[X]/(π))/((π,Q)/(π)) ∼=
(R/(π))[X]/(Q mod π). Now R/(π) is a PID (by h1 every ideal of R/(π)) is the same as an ideal of
R containing (π)) and so it is a UFD so (R/(π))[X] is a UFD in which the irreducible Q(X) mod π
is prime. Thus R[X]/(π,Q) is an integral domain so (π,Q) is a prime ideal.

(b): Consider i : R→ R[X]. Then p∩R = i∗(p) which is a prime ideal of R. R is a PID so p∩R = (0)
of (π) for some π ∈ R nonzero.

(c): R is a PID so S = R−0 is multiplicatively closed. Since p∩R = 0 then p∩S = ∅ so p yields a prime
ideal S−1p of S−1R[X] = FracR[X]. But FracR[X] is a PID as FracR is a field so S−1p = (T (X)) for
some T ∈ FracR[X] either 0 or irreducible. If T = 0 then S−1p = 0 and so p = 0. If T is irreducible in
FracR[X], let α ∈ FracR such that P = αT ∈ R[X] with coprime coefficients. (Take α the gcd of the
denominators of the coefficients of T divided by the gcd of the numerators of the coefficients of T .)

Then S−1p = (T ) = (P ) and so p = {Q(X)|Q(X)/1 ∈ (P )} so we seek Q/1 = PU/r for U ∈ R[X] and
r ∈ R− 0. But then for some t ∈ R− 0 have (Qr−PU)t = 0 and since R[X] is an integral domain we
get Qr = PU so P | Qr. P is irreducible in R[X] because it is so in FracR[X] and its coefficients are
coprime. Thus (r, P ) = (1) and so P | Q which implies that p = (P (X)).

(d): Suppose p∩R = (π). The set of such p is, by h1, in bijection with the prime ideals of R[X]/(π) =
(R/(π))[X]. But R/(π)[X] is a PID and so UFD so its prime ideals are principal of the form (Q(X))
where Q ∈ R[X] is either 0 or irreducible mod π. If 0 then p = (π) and otherwise p is the preimage
(π,Q(X)) of (Q(X)).

(e): Z is a PID so its prime ideals are (0), (p), (P (X)) and (p,Q(X)) where p is a prime, P ∈ Z[X]
is irreducible and Q(X) ∈ Z[X] is irreducible mod p. Among these maximal are the (p,Q). Indeed,
in the other cases the quotient is not a field. Let’s show that Z[X]/(p,Q(X)) ∼= Fp[X]/(Q(X)) is a
field. Fp is a field, Fp[X] is a PID and (Q(X)) is a prime ideal of this PID. It is contained in some
maximal ideal (T (X)) with T irreducible. But then T divides Q and by irreducibility of Q we deduce
that Q = T so (Q) is a maximal ideal of Fp[X].
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2. Let R = C[X,Y ]. [Hint: This is an application of the previous problem.]

(a) Show that the prime ideals of C[X,Y ] are (0), (P (X,Y )) for an irreducible P (X,Y ) ∈ C[X,Y ]
and (X − a, Y − b) for some a, b ∈ C. Show that the maximal ideals are (X − a, Y − b).

(b) Show that p = (Y 2 −X3 −X2) is a prime ideal and that if a, b ∈ C such that b2 = a3 + a2 then
p ⊂ (X − a, Y − b).

(c) Let q = (X − a, Y − b). Show that the prime ideals of the localization Rq are: (0), qRq and
(P (X,Y ))Rq for any irreducible polynomial P (X,Y ) ∈ C[X,Y ] such that P (a, b) = 0.

Proof. (a): C[X] a PID then the previous problem yields the prime ideals of C[X,Y ]: (0), (P (X)) for
an irreducible P (X) ∈ C[X], (P (X,Y )) for an irreducible P (X,Y ) ∈ C[X,Y ], and (P (X), Q(X,Y ))
with P irreducible and Q(X,Y ) irreducible in the quotient C[X,Y ]/(P (X)). But P irreducible in C[X]
implies P (X) = X − a for some a ∈ C in which case C[X,Y ]/(P (X)) = C[X,Y ]/(X − a) ∼= C[Y ] and
thus Q(X,Y ) irreducible in C[Y ] means it is of the form Q mod P = Y − b for some b ∈ C. Finally
the list in the problem is complete as X − a is an example of irreducible P (X,Y ).

(b): If P (X,Y ) = Y 2 −X3 −X2 we need to show that P (X,Y ) ≡ 0 (mod X − a, Y − b). But Y ≡ b
(mod X − a, Y − b) and X ≡ a (mod Xa, Y − b) and the conclusion follows.

(c): The prime ideals of the localization Rq are in bijection with the prime ideals r of R such that
r ⊂ q. Then r is either (0), (S(X,Y )) for S irreducible or (X − c, Y − d), from the classification. In
the second case need S(X,Y ) to be a linear combination of X − a and Y − b so S(a, b) = 0. In the
third case we need c = a and d = b.

3. Consider the ring Z[ζ3].

(a) Show that Z[ζ3] is a Euclidean domain. [Hint: Mimick the proof from the Z[i] case.]

(b) Show that the units are Z[ζ3]× = {±1,±ζ3,±ζ23}. [Hint: Show that z ∈ Z[ζ3] is a unit iff |z| = 1.]

Proof. (a): Let d(z) = |z|2. Pick x, y ∈ Z[ζ3] and let q the element of Z[ζ3] closest in Euclidean
distance to x/y ∈ C. The elements of Z[ζ3] ⊂ C form a lattice consisting of unit side length equilateral
triangles. Thus |x/y−q| ≤ 1/

√
3 as inside an equilateral triangle of side 1 the farthest one can be from

the closest vertex is by being in the center, at distance 1/
√

3. Take r = x − qy ∈ Z[ζ3] in which case
d(r) = |x− yq|2 = |y|2|x/y − q|2 ≤ d(y)/3 < d(y). We deduce that d is a Euclidean function.

(b): If u ∈ Z[ζ3]× then uv = 1 so |u|2|v|2 = 1. But for u = a + bζ3, |u|2 = a2 + ab + b2 ∈ Z
so |u|2 = 1. Reciprocally, if |u| = 1 it follows that uu = 1 and certainly u ∈ Z[ζ3]. We solve
|u|2 = a2 + ab + b2 = (a + b/2)2 + 3b2/4 = 1. On the LHS each square is positive and cannot be > 1
so 3b2 ≤ 4 so b is either 0 or ±1. If b = 0 then a2 = 1 so u = a + bζ3 = ±1. If b = ±1 then we get
a2 + ab = 0 so a = 0 or a = −b. Thus u = ±ζ3 or u = ±(1 + ζ3) = ±ζ23 .

4. Let R be a commutative ring. A commutative ring is said to be reduced if it has no nonzero nilpotent
elements.

(a) Suppose that for every prime ideal p the localization Rp is reduced. Show that R is reduced.
[Hint: For a given x look at {y|xy = 0}?]

(b) Show that R = Z/6Z is not an integral domain but each localization Rp is an integral domain.

Proof. (a): If 0 6= x ∈ Nil(R) then xn = 0 for some n so x ∈ Nil(Rp) for all prime ideals p of R. Look
at A = {y ∈ R|xy = 0}. Then A is an ideal. Since x 6= 0 it follows that A 6= R and so it is contained
in a maximal ideal m of R. Then x/1 = 0 in Rm which implies that xy = 0 for some y ∈ R−m which
contradicts the fact that y ∈ A.
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(b): The prime ideals of R = Z/6Z are (2) and (3) ((0) is not as R is not a domain). Let’s show,
e.g, that R(2) is a domain, in fact a field. The elements are {a/b|a = 0, 1, 2, 3, 4, 5, b = 1, 3, 5}. If
a = 0, 2, 4 then a/b = (3a)/(3b) = 0/3b = 0 as 3b ∈ {1, 3, 5} and so the nonzero elements of R(2) are
{a/b|a, b = 1, 3, 5} which is visibly a group. The R(3) case is analogous.

5. Let R be a commutative ring. A proper (i.e., not 0 or R) ideal I of R is said to be good if the image
of R× ∪ 0 in R/I is all of R/I.

(a) Suppose R is a PID with no proper good ideals. Show that R cannot be a Euclidean domain.
[Hint: Otherwise, among the proper ideals I = (a) of R choose one with d(a) minimal. Show that
I is good.]

(b) You may assume that the ring R = Z
[
1+
√
−19
2

]
is a PID, that R× = {±1}, and that 2 and 3 are

prime in R. Show that R is not a Euclidean domain. [Hint: Are there good ideals?]

Proof. (a): Let I = (a) as in the hint. Pick x ∈ R and write x = qa+ r. If x ∈ I then x+ I = I is the
image of 0 + I as desired. If x /∈ I then r 6= 0. Moreover, d(r) < d(a) so the ideal (r) cannot be proper
as otherwise it would contradict the choice of a. Thus (r) = R and so r ∈ R×. But then x+ I = r+ I
as desired.

(b): We show there are no good ideals. Suppose I = (a) is good. Thus the image of {−1, 0, 1} = R×∪0
in R/(a) is all of R/(a). Take 2 ∈ R. Then 2 is congruent mod (a) to one of −1, 0, 1 and so a divides
one of 1, 2, 3. Since (a) is proper it cannot divide 1. Thus a | 2 or a | 3 and so either (a) = (2) or
(a) = (3).

Write α =
√
−19. Then (1 + α)/2 is congruent mod (a) to one of −1, 0, 1. Thus a must divide

w + (1 + α)/2 for w ∈ {−1, 0, 1}. It is elementary to see that neither 2 nor 3 divides any of these
elements. Indeed, if a(u+ v(1 + α)/2) = w + (1 + α)/2 then we deduce

a(u+ v/2) = w + 1/2

av/2 = 1/2

Since a, v ∈ Z it follows that a must be invertible so neither 2 nor 3 works.
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