Math 80220 Algebrai Number Theory
Problem Set 2

Andrei Jorza

Due Wednesday, February 12

Definition 1. A Euclidean domain is a ring R with a Euclidean algorithm, i.e., there exists a “Euclidean”
function d : R—{0} — Z>; with the following property (capturing division with remainder): for any m,n € R
there exist ¢, € R such that m = ng + r and r is either 0 or d(r) < d(n). You already know that Z and
F[X] are Euclidean domains (here F' is a field).

1.

3.

4.

Examples of Euclidean domains.

(a) Show that the ring of formal power series F[X] with coeflicients in a field F' is a Euclidean domain
with Euclidean function d(3_, -, apX*) =n if a,, # 0. [Hint: When is a power series invertible?]

(b) For d = —1,—2 show that Z[/d] is a Euclidean domain with Euclidean function d(a + bv/d) =
NQ(\/g)/Q(a + bV/d) = a® — b*d (this is the square of the usual Euclidean distance in the two-

dimensional vector space Q + Qv/d C C). [Hint: Define ¢ as the element of Z[/d] closest to
m/n € Q(\/d); draw a picture to show that then ¢ is at most distance 1 away from m/n and
conclude that d(r/n) < 1]

(c) Show that Z[(3] is a Euclidean domain with Euclidean function d(a+b(3) = |a+b(3|* = a®—ab+b.
[Hint: Define ¢ as the element of Z[(3] closest to m/n € Q((3).]

Remark 1. The ring Z[v/d] is Euclidean with respect to the norm Euclidean function if and only if d
is one of —11,-7,-3,-2,-1,2,3,5,6,7,11,13,17,19,21, 29, 33, 37,41, 57, 73.

. If R is a Dedekind domain, p is a prime ideal of R and I is any ideal let v,(I) be the exponent of p in

the unique factorization of I into prime ideals. If € R then v, (z) = vy ((z)R).

(a) Suppose R is a Dedekind domain, py,...,p, are prime ideals of R and e1,...,e, € Z. Use the
Chinese Remainder Theorem to show that there exists « € Frac R such that v, (z) = e; for all 1.

(b) Conclude that if R is a Dedekind domain with finitely many prime ideals then R is a PID.

(¢) Suppose R is a Dedekind domain with finitely many prime ideals pi,...,p,. Show that R is a
Euclidean domain with Euclidean function d(r) = Y vp,(r). [Hint: reduce to the case when m
and n are coprime and then use the Chinese Remainder Theorem to find the residue r coprime
to all prime ideals p; not dividing n.]

Remark 2. Suppose R is a Dedekind domain and I is an ideal of R. Let R(;) be the subring of Frac(R)

consisting of fractions 7 whose denominators are coprime to I. Then the prime ideals of Ry are

precisely the (finitely many) prime ideals dividing I.

(a) Show that every Euclidean domain R is a PID by showing that every ideal is generated by an
element which minimizes the Euclidean function.

(b) Show that every PID is integrally closed and conclude that Z[v/—3] is not a Euclidean domain.

The Euclidean domain (necessarily a PID) Z[(3].



(a)

(b)
()

(d)

If pis a prime = 2 (mod 3) and p | 22 + 2y +y* with 2,y € Z show that p | z,y. [Hint: p—1=1
(mod 3).]

If p is a prime = 1 (mod 3) show that p | a® + a4 1 for some integer a. [Hint: F is cyclic.]

If p=1 (mod 3) is a prime in Z which is also a prime in Z[(3] then p cannot divide a®> + a+ 1 =
(a—(3)(a—¢3) and conclude that p is reducible. Deduce that p = 22 + zy + y? for some z,y € Z.
Suppose n = 3F szl (mod 3) pre quz (mod 3) g™ is a positive integer. Show that z2+xy+y? =n
has solutions with =,y € Z only if m, are all even in which case the solutions can be enumerated
as

z—yls = u(l—C3)" H (ap = bpCa)"" (ap — bp(3) " H g/
p=1 (mod 3) ¢=2 (mod 3)
where u € Z[(3]* = {£1,+(, £33}, p = CLZ + apb, + bf, and 0 < u, < ny. Conclude that the

number of solutions is 6(d4(n) — d—(n)) where di(n) is the number of divisors of n which are
=41 (mod 3).

5. Show that 14 =27 = (1 ++1/—13)(1 — /—13) are two distinct factorizations into irreducible elements
of Z[v/—13]. What is the factorization of 14 into prime ideals of Z[/—13]?

6. (Optional, since the proof is identical to the proof of Problem 4, and you can find it in many places)
The Euclidean domain (necessarily a PID) Z[d].

(a)
(b)

()
(d)

If pis a prime = 3 (mod 4) and p | 2% +y? for z,y € Z show that p | x,y. [Hint: (p—1)/2 is odd!]
If p=1 (mod 4) show that p | a* + 1 for some a. [Hint: Either use the fact that F)* is cyclic or
show that a = (25%)! works.]

Show that if p a prime = 1 (mod 4) is also prime in Z[i] then p cannot divide a?+1 = (a+1)(a—1)
and conclude that p cannot be prime in Z[i]. Deduce that p = 22 + y? for some z,y € Z.
Suppose n = 2F szl (mod 4) pre qug (mod 4) g™ is a positive integer. Show that z2 +y? = n
has solutions with =,y € Z only if m, are all even in which case the solutions can be enumerated
as

x4 iy = u(l +4)" H (ap + bpt)"** (ap — byi)"» "7 H qme’?
p=1 (mod 4) qg=3 (mod 4)

where p = af) + b127’ u € {£1,+i} and 0 < up < n,. Conclude that the number of solutions is
4(d4(n) —d_(n)) where d(n) is the number of divisors of n which are = +1 (mod 4).



