1 Fields

(1.1) A field K is a ring such that $K - \{0\} = K^\times$ is the group of invertible elements. If L/K is a finite extension of fields (i.e., $L \supset K$) then $[L : K] = \dim_K L$. If $M/L/K$ are finite extensions then $[M : K] = [M : L][L : K]$.

(1.2) An element α is said to be algebraic over K is $P(\alpha) = 0$ for some monic $P \in K[X]$. For α algebraic the field $K(\alpha)$ is the minimal field containing both K and α. Every algebraic α has a minimal polynomial, monic in $K[X]$ obtained as the generator of the (proper) principal ideal in the PID $K[X]$ consisting of all polynomials which vanish at α, in which case $[K(\alpha) : K]$ equals the degree of this minimal polynomial.

Definition 1. A number field is defined to be a finite extension of \mathbb{Q}.

For any finite extension L/K of fields of characteristic 0 or of finite fields there exists a so-called primitive element $\alpha \in L$ such that $L = K(\alpha)$.

E.g., every quadratic extension L/K, by the quadratic formula, is of the form $L = K(\sqrt{\alpha})$ for some $\alpha \in K$.

(1.3) An extension L/K is said to be algebraic if every element of L is algebraic over K.

Fact 2. An element α is algebraic over K if and only if $K(\alpha)/K$ is an algebraic extension if and only if $K(\alpha)/K$ is a finite extension.

As an application we present:

Corollary 3. If α is algebraic of degree d then

$$K(\alpha) = K[\alpha] = \{a_0 + a_1 \alpha + \cdots + a_{d-1} \alpha^{d-1} | a_i \in K\}$$

Proof. Every element of $K(\alpha)$ is of the form $P(\alpha)/Q(\alpha)$. Write $\beta = Q(\alpha)$. Since α is algebraic it follows that $K(\beta) \subset K(\alpha)$ is finite over K and so β is algebraic over K. Let $b_0 + b_1 \beta + \cdots + b_m \beta^m$ be its minimal polynomial in which case $b_0 \neq 0$. Then

$$1/Q(\alpha) = \beta^{-1} = -b_0^{-1}(b_1 + b_2 \beta + \cdots + b_m \beta^{m-1}) \in K[\beta] \subset K[\alpha]$$

Thus $K(\alpha) = K[\alpha]$ and every polynomial of α can be reduced to a polynomial of degree at most $d - 1$ of alpha using the minimal polynomial of α over K.

Every field K has an algebraic closure \overline{K} which is algebraically closed. If L is any algebraically closed field (such as \mathbb{C}) containing K then there is a unique algebraic closure $\overline{K} \subset L$ consisting of all the elements of L which are algebraic over K. This is how we will think of $\overline{\mathbb{Q}}$ as the closure of \mathbb{Q} in \mathbb{C}.
(1.4) Embeddings. A number field \(K/\mathbb{Q} \) can sit inside \(\overline{\mathbb{Q}} \subset \mathbb{C} \) in more than one way. For example, \(\mathbb{Q}(i) \to \mathbb{C} \) given by \(a + bi \mapsto a \pm bi \) provides two distinct embeddings (i.e., injective homomorphisms) of fields which invary \(\mathbb{Q} \).

Fact 4. If \(\alpha \) is algebraic with minimal polynomial \(f(X) \) over \(K \) then the embeddings of \(K(\alpha) \) into \(\overline{K} \) which fix \(K \) are parametrized by the roots of \(f(X) \). If \(\beta \) is any root the associated embedding fixes \(K \) and takes \(\alpha \) to \(\beta \). This produces a unique isomorphism \(K(\alpha) \cong K(\beta) \).

Theorem 5. If \(L/K \) is finite there are exactly \([L:K] \) embeddings \(L \to \overline{K} \) fixing \(K \).

If \(M/L/K \) are finite extensions and \(\alpha_i \) are the embeddings of \(L \) into \(\overline{K} \) fixing \(K \) and \(\tau_j \) are the embeddings of \(M \) into \(\overline{L} = \overline{K} \) fixing \(L \) then the embeddings of \(M \) into \(\overline{K} \) fixing \(K \) are \(\sigma_i \tau_j \).

2 Number Rings

(2.1)

Definition 6. An algebraic integer is an element \(\alpha \) satisfying \(P(\alpha) = 0 \) for some monic \(P \in \mathbb{Z}[X] \). For a number field \(K \) we write \(\mathcal{O}_K \) for the set of algebraic integers in \(K \).

Recall Gauss' lemma that if \(P \in \mathbb{Z}[X] \) is monic and irreducible in \(\mathbb{Z}[X] \) then \(P \) is irreducible in \(\mathbb{Q}[X] \).

(2.2)

Proposition 7. An element \(\alpha \) is an algebraic integer if and only if \(\mathbb{Z}[\alpha] \) is a finite \(\mathbb{Z} \)-module.

Proof. Done in class. See textbook Proposition 2.3.4

Corollary 8. If \(\alpha, \beta \) are algebraic integers then \(\alpha \pm \beta, \alpha \cdot \beta \) are algebraic integers.

Proof. Done in class. See textbook Proposition 2.3.5

The conclusion is that the set \(\mathcal{O}_K \) of algebraic integers in the number field \(K \) is in fact a ring.