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Today: traces and norms, discriminants and integral bases. Textbook here is http://wstein.org/books/ant/ant.pdf

3 Trace and Norm (continued)
(3.8)

Proposition 1. Let p > 2 be prime. Then the ring of integers of Q((p) is Z[Cp]. In fact for any positive
integer n the ring of integers of Q(¢y,) is Z[(y).

Proof. Only did in class the case of p prime. First, note that Z[(,] = Z[1 — (] as a basis of the LHS over Z
is 1,(p, ..., Cp—2 while of the RHS is 1,1 — (,, (1 — ()%, ..., (1 — ()P~ 2 and it’s clear one can go from the
LHS basis to the RHS basis using a lower-triangular matrix with 1-s on the diagonal. This matrix is then
invertible in GL(p — 1,Z) and so the two bases are equivalent.

From one of the problems on problem set 1 you computed that (K = Q((,))

discg /g1, Gps -+ - CZI;—2) = (=1)P=D/2pp=2

But this discriminant (as shown in class) is independent of a Z-basis and so it is also equal to D =
diSCK/Q(L 1-— Cpa (1 - Cp)27 R (1 - Cp)piz)'

We have show in class that if « = ag+a1(1 — () +--- +ap—2(1 — Cp)p*2 € Ok then Da; € Z and so we
may write

o =10 +ma(l—G) + o+ mpa(l —G)P2 € Ok
pr—?

If a ¢ Z[(p) = Z[1 — (] then the coefficients m; are not all divisible by pP~2. In fact we may cancel out any
common factor of p among the m; and write

mo +mi(1 =)+ +my_o(l — ()P 2
k
p

where not all mg are divisible by p and k < p — 2. Let ¢ be the smallest index such that p { m;. Then

B = pa—la _ o + m1(1 — Cp) ++mi—a(1 - gp)i_l _ mi(l - Cp)i +o Tt mp—2(1 - (:p)p_Q
p p

is also in O since Z[(,] C Ok.
Note that N/g(1—¢p) = (1=C)(1—¢2)---(1—=¢F 1) =171 +1P24.. .4 141 =p. Since 1 ¢, | 1 —¢}
(here a | b means b/a € Of) it follows that (1 —(,)P~! | p. Now
pB=m;(1 - Cp)l e myp (1 — Cp)p72

in Og. If i < p—2 then note that (1 —¢,)"™ | (1 —¢,)?"2 | p and so we deduce that 1 — ¢, | m;. But
1 —¢, | p and since p ¥ m; it follows that we can find u,v € Z such that m;a + pb = 1 which would imply



that 1 — ¢, | 1. But then 1/(1 — ¢,) € Og which is impossible because then Ny /q(1/(1 — () = 1/p would
be an integer. Thus we get a contradiction. If i = p — 2 then p3 = m,,_2(1 — (,)?~2 which would imply that
1 —(p | mp—2 yielding a contradiction as before.

The conclusion is that Ox = Z[(,] as desired. O

4 Unique factorizations in Dedekind domains

(4.1)

Definition 2. A ring R is said to be noetherian if every increasing chain of ideals Iy C Iy C ... stabilizes, i.e.,
I,=1I,11 = forn>>0. A module M/R is noetherian if every chain of R-submodules M; C M C ...
stabilizes.

Example 3. Z, F[X] are noetherian because ideals are principal. The ring Z is not noetherian because
(2) € (21/?) € (21/%) C ... doesn’t stabilize.

Fact 4. 1. Quotients of noetherian rings are noetherian.
2. (Hilbert basis theorem) If R is noetherian then R[X7, ..., X,] is noetherian.
3. The noetherian modules over a noetherian ring are precisely the finitely generated ones.

Remark 1. The main use of the noetherian condition is the following. Suppose P is a set of ideals (defined,
say, by having a certain property). If R is noetherian then every ideal in P is contained in an ideal in P
which is maximal in P, i.e., it is not contained in any bigger ideal in P. Indeed, if I; C I3 C ... is a chain
of ideals in P then it stabilizes and the “limit” is necessarily in P. Thus Zorn’s lemma implies that every
ideal is contained in an ideal of P which is maximal. We will use this many times.

(4.2)

Definition 5. If R is an integral domain and K is its fraction field, a fractional ideal of R is a finitely
generated R-submodule of K.

Note that finite generation implies that if I is a fractional ideal then there exists @ € R such that ol C R,
i.e., is an ideal of R.

Example 6. 7 is a fractional ideal of Z. Similarly %F [X] is a fractional ideal of F[X] where F' is any
field.

Definition 7. We define a multiplication law on fractional ideals given by I.J = {>_ ay;|x; € I,y; € J}.
Note that TR = I for every fractional ideal I of R. With respect to this multiplication and unit a fractional
ideal I is invertible if there exists a fractional ideal I~! such that IT-! = R.

For example (2Z)~1 = 27,
(4.3)
Definition 8. An integral domain R is said to be a Dedekind domain if
1. R is noetherian
2. R is integrally closed (i.e., in its fraction field K)
3. Every prime ideal of R is maximal.

Example 9. Z and F,[X] are Dedekind domains. The algebraic integers 7 is not because it is not noetherian.
The ring Z[v/5] is not because it is not integrally closed. The ring Z[X] is noetherian and integrally closed
but the prime ideal (X) is not maximal because Z[X]/(X) = Z is an integral domain which is not a field.
Thus Z[X] is not a Dedekind domain.



