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Today: traces and norms, discriminants and integral bases. Textbook here is http://wstein.org/books/ant/ant.pdf

3 Trace and Norm (continued)
(3.8)

Proposition 1. Let p > 2 be prime. Then the ring of integers of Q(ζp) is Z[ζp]. In fact for any positive
integer n the ring of integers of Q(ζn) is Z[ζn].

Proof. Only did in class the case of p prime. First, note that Z[ζp] = Z[1− ζp] as a basis of the LHS over Z
is 1, ζp, . . . , ζp−2 while of the RHS is 1, 1 − ζp, (1 − ζp)2, . . . , (1 − ζp)p−2 and it’s clear one can go from the
LHS basis to the RHS basis using a lower-triangular matrix with 1-s on the diagonal. This matrix is then
invertible in GL(p− 1,Z) and so the two bases are equivalent.

From one of the problems on problem set 1 you computed that (K = Q(ζp))

discK/Q(1, ζp, . . . , ζ
p−2
p ) = (−1)(p−1)/2pp−2

But this discriminant (as shown in class) is independent of a Z-basis and so it is also equal to D =
discK/Q(1, 1− ζp, (1− ζp)2, . . . , (1− ζp)p−2).

We have show in class that if α = a0 + a1(1− ζp) + · · ·+ ap−2(1− ζp)p−2 ∈ OK then Dai ∈ Z and so we
may write

α =
m0 +m1(1− ζp) + · · ·+mp−2(1− ζp)p−2

pp−2
∈ OK

If α /∈ Z[ζp] = Z[1− ζp] then the coefficients mi are not all divisible by pp−2. In fact we may cancel out any
common factor of p among the mi and write

α =
m0 +m1(1− ζp) + · · ·+mp−2(1− ζp)p−2

pk

where not all m0 are divisible by p and k ≤ p− 2. Let i be the smallest index such that p - mi. Then

β = pa−1α− m0 +m1(1− ζp) + · · ·+mi−1(1− ζp)i−1

p
=
mi(1− ζp)i + · · ·+mp−2(1− ζp)p−2

p

is also in OK since Z[ζp] ⊂ OK .
Note that NK/Q(1−ζp) = (1−ζp)(1−ζ2p) · · · (1−ζp−1

p ) = 1p−1+1p−2+ · · ·+1+1 = p. Since 1−ζp | 1−ζip
(here a | b means b/a ∈ OK) it follows that (1− ζp)p−1 | p. Now

pβ = mi(1− ζp)i + · · ·+mp−2(1− ζp)p−2

in OK . If i < p − 2 then note that (1 − ζp)i+1 | (1 − ζp)p−2 | p and so we deduce that 1 − ζp | mi. But
1 − ζp | p and since p - mi it follows that we can find u, v ∈ Z such that mia + pb = 1 which would imply
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that 1− ζp | 1. But then 1/(1− ζp) ∈ OK which is impossible because then NK/Q(1/(1− ζp)) = 1/p would
be an integer. Thus we get a contradiction. If i = p− 2 then pβ = mp−2(1− ζp)p−2 which would imply that
1− ζp | mp−2 yielding a contradiction as before.

The conclusion is that OK = Z[ζp] as desired.

4 Unique factorizations in Dedekind domains
(4.1)

Definition 2. A ring R is said to be noetherian if every increasing chain of ideals I1 ⊂ I2 ⊂ . . . stabilizes, i.e.,
In = In+1 = · · · for n >> 0. A module M/R is noetherian if every chain of R-submodules M1 ⊂ M2 ⊂ . . .
stabilizes.

Example 3. Z, F [X] are noetherian because ideals are principal. The ring Z is not noetherian because
(2) ⊂ (21/2) ⊂ (21/4) ⊂ . . . doesn’t stabilize.

Fact 4. 1. Quotients of noetherian rings are noetherian.

2. (Hilbert basis theorem) If R is noetherian then R[X1, . . . , Xn] is noetherian.

3. The noetherian modules over a noetherian ring are precisely the finitely generated ones.

Remark 1. The main use of the noetherian condition is the following. Suppose P is a set of ideals (defined,
say, by having a certain property). If R is noetherian then every ideal in P is contained in an ideal in P
which is maximal in P, i.e., it is not contained in any bigger ideal in P. Indeed, if I1 ⊂ I2 ⊂ . . . is a chain
of ideals in P then it stabilizes and the “limit” is necessarily in P. Thus Zorn’s lemma implies that every
ideal is contained in an ideal of P which is maximal. We will use this many times.

(4.2)

Definition 5. If R is an integral domain and K is its fraction field, a fractional ideal of R is a finitely
generated R-submodule of K.

Note that finite generation implies that if I is a fractional ideal then there exists α ∈ R such that αI ⊂ R,
i.e., is an ideal of R.

Example 6. m
n Z is a fractional ideal of Z. Similarly P (X)

Q(X)F [X] is a fractional ideal of F [X] where F is any

field.

Definition 7. We define a multiplication law on fractional ideals given by IJ = {
∑
xiyi|xi ∈ I, yi ∈ J}.

Note that IR = I for every fractional ideal I of R. With respect to this multiplication and unit a fractional
ideal I is invertible if there exists a fractional ideal I−1 such that II−1 = R.

For example (m
n Z)−1 = n

mZ.

(4.3)

Definition 8. An integral domain R is said to be a Dedekind domain if

1. R is noetherian

2. R is integrally closed (i.e., in its fraction field K)

3. Every prime ideal of R is maximal.

Example 9. Z and Fp[X] are Dedekind domains. The algebraic integers Z is not because it is not noetherian.
The ring Z[

√
5] is not because it is not integrally closed. The ring Z[X] is noetherian and integrally closed

but the prime ideal (X) is not maximal because Z[X]/(X) ∼= Z is an integral domain which is not a field.
Thus Z[X] is not a Dedekind domain.
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