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Today: traces and norms, discriminants and integral bases. Textbook here ishttp://wstein.org/books/ant/ant .pdf

4 Dedekind domains

(4.6) We are ready for unique factorization in Dedekind domains. For clarity, start with a lemma.
Lemma 1. Suppose R is a Dedekind domain and I,J are fractional ideals. If [ = 1J then J C R.

Proof. We already did this implicitly in the prood of the fact that every ideal is invertible. Here is a sketch:

The fractional ideal [ is finitely generated over Z and so I = ®Za«; for some «;. If z € J then x acting
by multiplication on I (since I = IJ) has xa; = > m;jo; and so multiplication by z on I is the same
as multiplication on ®Zcq; by the matrix (m;;) € My xn(Z). Multiplication by x thus satisfies, by Cayley-
Hamilton, the characteristic polynomial of (m;;) which is monic in Z[X] and so z will be integral over Z.
But R is integrally closed and so x € R. Thus J C R. O

Theorem 2. Suppose R is a Dedekind domain. Then every fractional ideal I can be written uniquely (up
to permutations) as a product [ ], p;"* where n; € Z and p; are prime ideals.

Proof. This is textbook Theorem 3.1.11

First, note that the case of fractional ideals can be reduced to that of ideals by multiplication. Next, if
[1p: =114, then [[p; C q; for each j. Thus by the observation at the end of the previous lecture it follows
that p, = q; for some ¢. Multiplying [[p; = [[q; by the inverse of p; = q; yields an equality of products
of prime ideals containing fewer factors in each product. Repeating the argument proves the fact that the
prime ideals p; and q; are permutations of each other.

For existence, if not every ideal is a product of primes ideals then there exists a maximal I which is not
a product of prime ideals by the noetherian property. The trivial ideal R is a trivial product of primes and
so I C p C R where p is some prime ideal (every ideal is contained in a maximal ideal!) Therefore p | I and
so Ip~! C Ris an ideal. If I = Ip~*! then the above lemma implies that p~* C R and of course this would
imply that R C p which is false. Thus I C Ip~! and by maximality of I it follows that Ip~? is invertible
and I=t =p~1(Ip~1)~L. O

(4.7) The Chinese Remainder Theorem.

Proposition 3. 1. Suppose n; are pairwise coprime integers and a; € Z. Then there exists a € Z such
that a = ¢; (mod n;). Equivalently,

z/ [z =] 2/niz
2. If R is any commutative ring with unit and I; are pairwise coprime ideals of R (i.e., if i # j then

I; +I; = R), then
R/ L =] Rr/%:



Proof. Done in class, see textbook §5.1.1 O

(4.8) Generators for fractional ideals in Dedekind domains.

Lemma 4. Suppose R is a Dedekind domain and I,J are two ideals. Then there exists a € I such that
(a)I~* and J are coprime.

Proof. Done in class, see textbook Lemma 5.2.2. O
Theorem 5. If R is a Dedekind domain then every fractional ideal is generated by 2 elements.

Proof. Tt suffices to show this for ideals since fractional ideals are scalar multiples of ideals. Suppose a €
is nonzero. Then the lemma above implies the existence of b € I such that (b)I~! and (a) are coprime. Now
a,b € I and so (a,b) C I where (a,b) = (a) + (b) is the ideal generated by (a) and (b). Thus I | (a,b).
If p" | (a,b) | (a),(b) it follows that p™ | (a) and p™ | (b). The ideals (a) and (b)I~! are coprime and so
p 1 (b)I~1. Thus the power of p in (b) equals the power of p in I and so p™ | I. Thus (a,b) | I and we
conclude that I = (a,b) is generated by two elements. O



