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Today: Unique factorization domains, primes under extensions. Textbook here ishttp://wstein.org/books/ant/ant.pd

4 Dedekind domains (continued)

(4.9) The classical theory of unique factorization.

Definition 1. In an integral domain R an element x is said to be irreducible if it cannot be written as
x = yz with y, z € R non-units. The integral domain R is said to be a unique factorization domain (UFD)
if every € R can be written uniquely (up to units and permutations) as a product of irreducible elements.

Example 2. 1. Z, F[X] for F a field and Z[X] are UFD but (cf. homework 2) Z[y/—13] is not.
2. In fact if R is a UFD then R[X] is a UFD.

Remark 1. If (x) is a prime ideal in R then z is irreducible (else = yz and so (z) | (y) or (z) | (2); in
the first case deduce that z is a unit). However, the converse is not true. Indeed, a = 2 + /=5 € Z[v/—5]
has norm Ng(/=5)/0(a) = 9 and if @ = zy then Ny o(z)Nk/g(y) = 9. Since N g(z) = 27 it follows
that  is a unit if and only if Ng,g(2) = 1 and so if  and y are not units it must be that N q(z) = 3.
But Nk g(u +vy/=5) = u? + 5v2 can never be 3. At the same time a = 2 + /=5 is not a prime because

24+ V=5 (2++vV-5)(2—vV=5) =9but 2++/-513 as
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What is really going on in this example is that Z[/—5] is not a UFD.
Proposition 3. If R is a UFD then all irreducible are primes.

Proof. Suppose z is irreducible and z | ab. Then cx = ab for some c. Since R is a UFD we may decompose
into irreducibles a = [[a;, b =[] b; and ¢ = [] ¢; in which case the uniqueness of the decomposition implies
that z is among the irreducibles a;,b;. Thus z | a or z | b. O

Theorem 4. If R is a PID then R is a UFD.

Proof. First, if I C I C ... is a chain of ideals of R then I = UI, is an ideal of R which is necessarily
principal and so I = (a). But then a € UI, implies that a € I,, C I,,+1 C ... for some n which implies that
I, =1I,4+1 =...= (a). Thus every PID is noetherian.

Existence. Since R is noetherian the set of (principal) ideals of R which don’t decompose into irreducibles
has a maximal element (). Then x cannot be irreducible and so z = yz for y, z not units. Then (z) C (y), ()

and by maximality y = [[y; and z = [] z; are products of irreducibles. But then = [[y; [[ #; is a product
of irreducibles yielding a contradiction.



Uniqueness. If R is a PID and z is irreducible then (z) is a maximal ideal. Indeed, if not then (z) C m C R
where m = (a) is some maximal ideal and so a |  but  t a. Thus & = ab where b € R is not a unit
contradicting the fact that z is irreducible. Now if [[z; = [[y,; are two products of irreducibles then,
because the ideals (z;) and (y;) are maximal, analogously to the case of unique factorization into prime
ideals in Dedekind domains, we deduce that (z1) = (y;) for some ¢. Canceling terms we can inductively show
that the two sets of factors are the same, up to units. O

From the homework: a Euclidean domain is an integral domain R with a Euclidean function d : R—{0} —
Z~o such that division with remainder holds, i.e., if m,n € R (n # 0) then there exist ¢, € R such that
m=ng+rand r =0 or d(r) < d(n).

Proposition 5. Fvery Fuclidean domain is a PID and thus a UFD.
Proof. Homework 2. O

Examples are Z, Z[v/d] for d = —1, =2, 2 and Z[(3]. For more examples and applications see the homework.

5 Ideals under extensions or Ramification theory

A basic question is the following. Suppose L/K are number fields and p is a prime ideal of O. Then pOy,
is an ideal of Op and will decompose into a product of prime ideals of Op. What are these prime factors?
And what arithmetic significance do they have? Can they be predicted?

Example 6. (From homework 2) If K = Q and L = Q(i). The ideal (2)Z[i] factors as (1 + ). If pis a
prime = 3 (mod 4) then (p)Z[i] stays a prime ideal in Z[i]. If p =1 (mod 4) then (p)Z[i] splits as a product
(p)Z[i] = qq. For example (5)Z[i] = (2 +4)(2 — 7).

Proposition 7. Suppose L/K are number fields (also works for a finite extension of fraction fields of integral
rings). If p is a prime ideal of O and q is a prime ideal of Oy, then the following are equivalent:

1.q|pOr
2.qD0p
3. qNOg =p
4. 9N K =p.
If any of these condition are satisfied we say q | p or q lies above p or p lies below q.

Proof. 1 implies 2 becauase p C pOy,. 2 implies 3 because q N Ok is an ideal of Ok, it is proper (otherwise
1 would be in q) and contains p and so must equal p by maximality of p. 3 implies 4 because O, N K = O.
Finally 4 implies 1 because then p C q and so pOp, C q. O

Proposition 8. Suppose L/K are number fields.
1. Every prime ideal q of Oy lies above a prime ideal p of Ok .
2. FEvery prime ideal p of Ok lies below a prime ideal q of Of.

Proof. For the first part note that ¢ N Ok is an ideal of Og. It cannot be everything because then 1 € ¢
and if a € q then a | Ny /(o) € Ok and so qN Ok # 0. Moreover,

Ok /(0O Nq) = (Ox +q)/q9C OL/q

The RHS being a field implies that the LHS is an integral domain and so q N Ok is a prime ideal of Og.
For the second part, we seek q of the form pOpr. Since p is proper it follows that p~t 2 Ok and so
p~! =" Za; where at least one of the «; is not in Ok. With a = a; ¢ Ok we have apOr C p~pOr = Or.
If pOr, = Oy, it would follows that O, C O, but then we’d deduce that a1 € O, contradicting our choice.
Thus pOr € Or. Finally, any prime factor q of pOp will lie above p. O



