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Today: Unique factorization domains, primes under extensions. Textbook here is http://wstein.org/books/ant/ant.pdf

4 Dedekind domains (continued)
(4.9) The classical theory of unique factorization.

Definition 1. In an integral domain R an element x is said to be irreducible if it cannot be written as
x = yz with y, z ∈ R non-units. The integral domain R is said to be a unique factorization domain (UFD)
if every x ∈ R can be written uniquely (up to units and permutations) as a product of irreducible elements.

Example 2. 1. Z, F [X] for F a field and Z[X] are UFD but (cf. homework 2) Z[
√
−13] is not.

2. In fact if R is a UFD then R[X] is a UFD.

Remark 1. If (x) is a prime ideal in R then x is irreducible (else x = yz and so (x) | (y) or (x) | (z); in
the first case deduce that z is a unit). However, the converse is not true. Indeed, a = 2 +

√
−5 ∈ Z[

√
−5]

has norm NQ(
√
−5)/Q(a) = 9 and if a = xy then NK/Q(x)NK/Q(y) = 9. Since NK/Q(x) = xx it follows

that x is a unit if and only if NK/Q(x) = 1 and so if x and y are not units it must be that NK/Q(x) = 3.

But NK/Q(u + v
√
−5) = u2 + 5v2 can never be 3. At the same time a = 2 +

√
−5 is not a prime because

2 +
√
−5 | (2 +

√
−5)(2−

√
−5) = 9 but 2 +

√
−5 - 3 as

3

2 +
√
−5

=
2−
√
−5

3
/∈ Z[
√
−5]

What is really going on in this example is that Z[
√
−5] is not a UFD.

Proposition 3. If R is a UFD then all irreducible are primes.

Proof. Suppose x is irreducible and x | ab. Then cx = ab for some c. Since R is a UFD we may decompose
into irreducibles a =

∏
ai, b =

∏
bi and c =

∏
ci in which case the uniqueness of the decomposition implies

that x is among the irreducibles ai, bj . Thus x | a or x | b.

Theorem 4. If R is a PID then R is a UFD.

Proof. First, if I1 ⊂ I2 ⊂ . . . is a chain of ideals of R then I = ∪In is an ideal of R which is necessarily
principal and so I = (a). But then a ∈ ∪In implies that a ∈ In ⊂ In+1 ⊂ . . . for some n which implies that
In = In+1 = . . . = (a). Thus every PID is noetherian.

Existence. Since R is noetherian the set of (principal) ideals of R which don’t decompose into irreducibles
has a maximal element (x). Then x cannot be irreducible and so x = yz for y, z not units. Then (x) ( (y), (z)
and by maximality y =

∏
yi and z =

∏
zi are products of irreducibles. But then x =

∏
yi
∏
zj is a product

of irreducibles yielding a contradiction.
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Uniqueness. If R is a PID and x is irreducible then (x) is a maximal ideal. Indeed, if not then (x) ( m ⊂ R
where m = (a) is some maximal ideal and so a | x but x - a. Thus x = ab where b ∈ R is not a unit
contradicting the fact that x is irreducible. Now if

∏
xi =

∏
yj are two products of irreducibles then,

because the ideals (xi) and (yj) are maximal, analogously to the case of unique factorization into prime
ideals in Dedekind domains, we deduce that (x1) = (yi) for some i. Canceling terms we can inductively show
that the two sets of factors are the same, up to units.

From the homework: a Euclidean domain is an integral domain R with a Euclidean function d : R−{0} →
Z>0 such that division with remainder holds, i.e., if m,n ∈ R (n 6= 0) then there exist q, r ∈ R such that
m = nq + r and r = 0 or d(r) < d(n).

Proposition 5. Every Euclidean domain is a PID and thus a UFD.

Proof. Homework 2.

Examples are Z,Z[
√
d] for d = −1,−2, 2 and Z[ζ3]. For more examples and applications see the homework.

5 Ideals under extensions or Ramification theory

A basic question is the following. Suppose L/K are number fields and p is a prime ideal of OK . Then pOL

is an ideal of OL and will decompose into a product of prime ideals of OL. What are these prime factors?
And what arithmetic significance do they have? Can they be predicted?

Example 6. (From homework 2) If K = Q and L = Q(i). The ideal (2)Z[i] factors as (1 + i)2. If p is a
prime ≡ 3 (mod 4) then (p)Z[i] stays a prime ideal in Z[i]. If p ≡ 1 (mod 4) then (p)Z[i] splits as a product
(p)Z[i] = qq. For example (5)Z[i] = (2 + i)(2− i).
Proposition 7. Suppose L/K are number fields (also works for a finite extension of fraction fields of integral
rings). If p is a prime ideal of OK and q is a prime ideal of OL then the following are equivalent:

1. q | pOL

2. q ⊃ p

3. q ∩ OK = p

4. q ∩K = p.

If any of these condition are satisfied we say q | p or q lies above p or p lies below q.

Proof. 1 implies 2 becauase p ⊂ pOL. 2 implies 3 because q ∩ OK is an ideal of OK , it is proper (otherwise
1 would be in q) and contains p and so must equal p by maximality of p. 3 implies 4 because OL ∩K = OK .
Finally 4 implies 1 because then p ⊂ q and so pOL ⊂ q.

Proposition 8. Suppose L/K are number fields.

1. Every prime ideal q of OL lies above a prime ideal p of OK .

2. Every prime ideal p of OK lies below a prime ideal q of OL.

Proof. For the first part note that q ∩ OK is an ideal of OK . It cannot be everything because then 1 ∈ q
and if α ∈ q then α | NL/K(α) ∈ OK and so q ∩ OK 6= 0. Moreover,

OK/(OK ∩ q) ∼= (OK + q)/q ⊂ OL/q

The RHS being a field implies that the LHS is an integral domain and so q ∩ OK is a prime ideal of OK .
For the second part, we seek q of the form pOL. Since p is proper it follows that p−1 ) OK and so

p−1 =
∑

Zαi where at least one of the αi is not in OK . With α = αi /∈ OK we have αpOL ⊂ p−1pOL = OL.
If pOL = OL it would follows that αOL ⊂ OL but then we’d deduce that α ·1 ∈ OL contradicting our choice.
Thus pOL ( OL. Finally, any prime factor q of pOL will lie above p.
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