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6 Galois theory (continued)
(6.1) Basics (continued)

Example 1. Examples of Galois extensions and Galois groups.

1. Q(v/m)/Q has Galois group Z/2Z sending /m — £/m.
2. Q(v2 +v/2)/Q has Galois group Z /47 with generator sending \/2 +v2— \/2 — /2 and \/2 —V2
-2+ V2.

3. Q(¥/2)/Q is not Galois but has Galois closure Q(+/2,(3) whose Galois group over Q is S5 generated
by V2 (3V/2, (3 (3 and V2 — V/2, (53— (3.

4. The cyclotomic field Q(¢,)/Q has Galois group (Z/nZ)*. The Galois automorphism corresponding to
a € (Z/nZ)* sends ¢, — (2.

5. The finite field extension Fyn /Fym (here m | n) is Galois with Galois group Z/7Z generated by ¢™
where ¢ : Fyn — Fyn is the “Frobenius” map ¢(z) = zP.

(6.2) Prime ideals and the Galois group.

Proposition 2. Let L/K be a Galois extension of number fields.
1. 0 € Gal(L/K) acts on Op.
2. if q is a prime ideal of O above a prime ideal p of O then o(q) is also a prime ideal of O above p.
3. Gal(L/K) acts transitively on the set of prime factors of pOy,.

4. ifq,q" | p then

€q/p = Ca’/p
fare = Jarsp

5. If pOr, = T1i_, af with e the common ramification index and f the common inertia index then ref =
[L: K].

Proof. First part: same polynomial.
Second part: if xy € o(q) then o~ (z)o~(y) € q and so x € o(q) or y € o(q). Thus o(q) is a prime
ideal. Also o(q) N K =0(qN K) =0o(p) =p.



Third part: Suppose q and ¢’ are distinct prime factors of pOp, and ¢’ # o(q) for all o € Gal(L/K). By
the Chinese Remainder Theorem we can find o € Oy, such that

a=0 (modq’)
a=1 (mod a(q))
for all @ € Gal(L/K). Then Ny /x(a) = [[oi(a) € ¢ N K = p. But oi(a) ¢ p C q for all o giving a
contradiction.
Fourth part: If pOr = [[q;° then pOr = [[o(q;)%. Since Gal(L/K) acts transitively it follows that

e; = e; for all 4, j. Moreover, kq, = kq, by the same argument and so the equality of inertial indices follows.
Fifth part: immediate from > e;f; = [L : K]. O

(6.3) Main results of Galois theory.
Theorem 3. Suppose L/K is a Galois extension.
1. If L/M/K then L/M is Galois.
If H C Gal(L/K) is a subgroup then L = {z € L|o(z) = x,Yo € H} is a subfield L)LY /K.
We have Gal(L/L") = H and LG/M) = pf,

e e

The maps M + Gal(L/M) and H ~ L are inverse bijections between the set of subextensions
L/M/K and the subgroups H C Gal(L/K).

5. M/K (or L /K ) is Galois if and only if Gal(L/M) (or H) is a normal subgroup of Gal(L/K), in
which case Gal(M/K) = Gal(L/K)/Gal(L/M) (Gal(L" /K) = Gal(L/K)/H ).

Example 4. In class I did the subfields of Q(+/2)/Q and the corresponding subgroups of S3. This is found
in any book on Galois theory.

(6.4) Decomposition groups.

Definition 5. Suppose L/K are number fields and q | p ideals of Of, and Ok. The decomposition group
Dq)p = {0 € Gal(L/K)|o(q) = q}. Then Dy, = Stabgai(r,x)(q)-

Lemma 6. 1. If o € Gal(L/K) then 0Dq/p0 " = Dy(q)/p-

2. If p=TI,_, qf then |Dq/,| =ef.

3. If 0 € Dq/p then o induces an automorphism o on kq which fizes ky. This yields a homomorphism
Dq/p — Gal(kq/kp).

Proof. Part 1: This is true of all group actions. This implies that all decomposition groups have the same
cardinality.

Part 2: Since Gal(L/K) acts transitively on the set of primes g, in pOp = [];_, q¢ it follows that
[L: K]=|Gal(L/K)| =r|Dg/p| and so |Dy,,| = ef. Here I use that if G acts on a finite set X and z € X
has stabilizer H then Gz = (G/H)x has as many elements as the set G/H; if the action is transitive then
IX| = |G/H| and so |H| = [G]/|X].

Part 3: Follows from definitions. O

Definition 7. For q | p the inertia subgroup I, is the kernel 0 — I/, — Dg/, — Gal(ky/ky). It consists
of 0 € Dy, such that o(r) =2 (mod q) for all z € Or.



