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6 Galois theory (continued)
(6.9) Back to ramification.

Theorem 1. Let K/Q be a number field and p a prime. Then p ramifies in K iff p | disc(K).

Proof. We already proved one direction.
Now the other direction: suppose p | disc(K). Let αi be an integral basis of OK . It follows that the rows

of ((αi, αj)) must have a nontrivial dependence mod p since p divides the determinant. There exist integers
mi, not all divisible by p, such that

∑
mi(αi, αj) ≡ 0 (mod p) for all j. Say p - m1 and let α =

∑
miαi.

Thus (α, x) ≡ 0 (mod p) for all x ∈ OK with α /∈ (p)OK .
If p were unramified in K then (p) =

∏
qi where qi are distinct prime ideals of OK . If α ∈ qi for all i

then α ∈ ∩qi =
∏

qi which cannot be. Say α /∈ q = q1.
Let L/Q be the normal closure of K/Q. Since p is unramified in K it is also unramified in L. As before

this implies that α /∈ q for some q | p an ideal of OL. Then

TrL/Q(αΩL) = TrK/Q ◦TrL/K(αOL)

= TrK/Q(αTrL/K(OL))

⊂ TrK/Q(αOK)

⊂ pZ
⊂ q

Choose β ∈ (p)q−1 − q. Then αβOL ⊂ (p)q−1 − q. If σ ∈ GL/Q −Dq/p then σ(q) 6= q and so σ(αβOL) ⊂ q
because (p)σ(q)−1 contains q as a factor. Therefore∑

σ∈Dq/p

σ(αβOL) = TrL/Q(αβOL)−
∑

σ/∈Dq/p

σ(αβOL) ∈ q

Therefore
∑
σ∈D σ(αβOL) ≡ 0 in kq where we use the identification Dq/p

∼= Gal(kq/k(p)) from the fact that
p is unramified in L. By choice αβ /∈ q and so is a unit in kq which implies that

∑
σ∈D σ(x) = 0 for all

x ∈ kq which cannot be by linear independence of characters.

7 The Class Group
(7.1) Finiteness of the class group.

Definition 2. Let K be a number field. We already know that the fractional ideals of K from a group.
The class group Cl(K) of K is the quotient of the group of fractional ideals by the (normal) subgroup of
principal fractional ideals. If K is a number field then the class number is hK = |Cl(K)|.

From the definition OK is a PID if and only if Cl(K) = 1 iff hK = 1.
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Theorem 3. Let K be a number field.

1. Suppose there exists λ > 0 such that for every fractional ideal I there exists α ∈ I with |NK/Q(α)| ≤
λ||I||. Then Cl(K) is finite and is generated by prime ideals dividing (n)OK for n ≤ λ.

2. Such a λ exists and it has an effective albeit inefficient value.

Proof. Part one: First note that if the assumption is satisfied by ideals then it is also satisfied by fractional
ideals because we proved before that ||(a)I|| = |NK/Q(a)|||I|| and some multiple of a fractional ideal is an
ideal.

Let I be any fractional ideal and let α ∈ I−1 be such that |NK/Q(α)| ≤ λ||I−1||. Then J = (α)I ⊂
I−1I = OK has the property that ||J || = |NK/Q(α)|||I|| ≤ λ||I−1||||I|| = λ. Denoting [I] the image of the
fractional ideal I in Cl(K) it follows that some ideal J ∈ [I] has the property that ||J || ≤ λ.

The finiteness of Cl(K) is immediate: indeed, if ||J || = n ≤ λ then OK/J has n elements. But OK is a
finite free Z-module and only finitely many quotients of Z[K:Q] have cardinality n.

If p is a prime ideal of OK lying above the prime p of Z then ||p|| = pfp/p . Thus if J =
∏

peii then

||J || =
∏
p
eifpi/pi
i and every prime factor of J must lie above n.

Part two: Let α1, . . . , αn be an integral basis of OK and σ1, . . . , σn : K ↪→ Q be the embeddings fixing Q.
Then λ =

∏
i

∑
j |σi(αj)| will work. Indeed, let m = b n

√
||I||c. The set {

∑n
j=1mjαj |0 ≤ mi ≤ m} ⊂ OK has

(m+ 1)n > ||I|| elements and so at least two elements must be congruent mod I. Let α be the difference
of these two elements in which case α =

∑
kjαj with −m ≤ ki ≤ m and α ∈ I. But then

|NK/Q(α)| =
∏
i

|σi(
∑

kjαj)|

≤
∏
i

∑
j

|kj ||σi(αj)|

≤ mnλ

≤ λ||I||

Remark 1. The explicit value of λ obtained above is effective in that for every K it can be computed but it
is inefficient in that it’s value can be large.
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