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6 Galois theory (continued)
(6.9) Back to ramification.

Theorem 1. Let K/Q be a number field and p a prime. Then p ramifies in K iff p | disc(K).

Proof. We already proved one direction.

Now the other direction: suppose p | disc(K). Let o; be an integral basis of Og. It follows that the rows
of ((ei, j)) must have a nontrivial dependence mod p since p divides the determinant. There exist integers
m;, not all divisible by p, such that > m;(c;, ;) = 0 (mod p) for all j. Say p{my and let o = ) mja;.
Thus (a,z) =0 (mod p) for all z € Ok with o ¢ (p)Ok.

If p were unramified in K then (p) = [[q; where q; are distinct prime ideals of Ok. If « € g, for all 4
then a € Ng; = [] q; which cannot be. Say « ¢ q = q1.

Let L/Q be the normal closure of K/Q. Since p is unramified in K it is also unramified in L. As before
this implies that « ¢ q for some q | p an ideal of Op. Then

Try g(afr) = Trg g o Trp/x (@OL)
= Trg/g(aTrr/x(OL))
C TFK/Q(OéOK)
C pZ
cq

Choose 8 € (p)g~' —q. Then aBOL C (p)g~' —q. If 0 € G )9 — Dyyp then o(q) # q and so o(afOL) C q
because (p)o(q)~! contains q as a factor. Therefore

> 0(aBOL) = Trpg(aBOL) = Y o(afOr) €q

o€Dq/p o¢Dqg/p

Therefore ) ., o(afOr) =0 in ky where we use the identification Dy, = Gal(kq/k(,)) from the fact that
p is unramified in L. By choice af ¢ q and so is a unit in kg which implies that ) ., o(z) = 0 for all
x € kq which cannot be by linear independence of characters. O

7 The Class Group

(7.1) Finiteness of the class group.

Definition 2. Let K be a number field. We already know that the fractional ideals of K from a group.
The class group CI(K) of K is the quotient of the group of fractional ideals by the (normal) subgroup of
principal fractional ideals. If K is a number field then the class number is hx = | C1(K)|.

From the definition O is a PID if and only if CI(K) = 1 iff hx = 1.



Theorem 3. Let K be a number field.

1. Suppose there exists X > 0 such that for every fractional ideal I there exists a € I with |Ng g(a)| <
MII||. Then CI(K) is finite and is generated by prime ideals dividing (n)Ok for n < .

2. Such a X\ exists and it has an effective albeit inefficient value.

Proof. Part one: First note that if the assumption is satisfied by ideals then it is also satisfied by fractional
ideals because we proved before that ||(a)l|| = [Ng/g(a)||[I|| and some multiple of a fractional ideal is an
ideal.

Let I be any fractional ideal and let o € I=! be such that |Ng,g(a)] < A|[[I7Y|. Then J = (a)I C
I7'I = Ok has the property that ||J|| = |Ng q(a)|||I|| < A[I7]||I]] = A. Denoting [I] the image of the
fractional ideal I in C1(K) it follows that some ideal J € [I] has the property that ||J|| < A.

The finiteness of C1(K) is immediate: indeed, if ||J|| = n < A then Ok /J has n elements. But Ok is a
finite free Z-module and only finitely many quotients of Z**¥ have cardinality n.

If p is a prime ideal of Ok lying above the prime p of Z then ||p|| = pfr/». Thus if J = [[p§* then

171 =11 pfif” /%i and every prime factor of J must lie above n. B

Part two: Let aq, ..., a, be an integral basis of Ok and o1, ...,0, : K — Q be the embeddings fixing Q.
Then A = [[,; >, |oi(a;)| will work. Indeed, let m = [ {/||I]|]. The set {2?21 mja;|0 <m; <m} C Ok has
(m 4 1)™ > ||I|| elements and so at least two elements must be congruent mod I. Let o be the difference
of these two elements in which case a = kjo; with —m < k; < m and o € I. But then

Nicsafe)] = [T I3 ke
< [ killostay)

<m"A
< A
O

Remark 1. The explicit value of A\ obtained above is effective in that for every K it can be computed but it
is inefficient in that it’s value can be large.



