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8 Units

(8.1) The purpose of this section is to prove the following theorem of Dirichlet:

Theorem 1 (Dirichlet unit theorem). Suppose K is a number field with v real and 2s complex embeddings.
Then Oj is a finitely generated abelian group of rank r + s — 1.

Remark 1. Note that o € O iff N g(a) = £1.
Example 2. K = Q(y/m) with m > 0. Then r = 2,s = 0 and the real quadratic field K has rank 1 unit
group. E.g., O&ﬁ) =+(2+3)%

Example 3. K = Q(y/m) with m < 0. Then r = 0, s = 1 and the imaginary quadratic number field K has
finite unit group. E.g., 06(@) = {+1, £(3, £¢2}.
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Example 4. K = Q(+/2) has r = 1,5 =1 and so OQ(%) has rank 1. It turns out OQ(%) = +(v/2 - 1)%

Example 5. For a more complicated example, take K = Q(v/3,v/5). Then O} has rank 3 and in fact
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Example 6. K = Q((y») for p a prime. Then K is a quadratic extension of the real subfield KT =
Q(¢pr + Gpn') = Q(cos(27/p™)). All the embeddings of KT are real and K = K (isin(2m/p")) and so all
the p"~!(p — 1) embeddings of K are complex. Thus s = p"~!(p — 1)/2 but we can no longer describe the
s generators of O explicitly. However, we can say that O} has a finite index subgroup generated (as a
1=al—(5 sin(ra/p")
b n d n2 P =+
group) y Cp an Cp 1 . Cp" Sln(ﬂ/p”)
Remark 2. If K/Q is Galois then either r = 0 or s = 0 as the Galois group acts transitively (and in fact can
be identified with) the set of embeddings into C.

for 1 < a < p™/2 coprime to p.

(8.2) To understand the class group of K we used the embedding ¢ : K — R” taking Ok to the lattice
A and we implicitly used that this embedding was additive. To study Oy we would like to transform the
unpleasant multiplicative on O to a much more usable additive structure on a vector space.

Consider the map log : R — R"* given by

log((x1,...,2r12s)) = (logl|z1], ..., log |z, log(ac?”_|r1 + xf+2), .
and > : R — R given by > (%1,...,Trys) =21 + - + Tpis.
Lemma 7. 1. The composite map logor : K* — R™ is additive, i.e., log(t(zy)) = log(c(z)) + log(c(y)).
2. The image of O lies in a hyperplane: log(c(O))) C A where A = {(z1,...,Zr1s)|x1+- - +xrps = 0}.



3. The additive subgroup log(1(Of)) C A is a discrete abelian subgroup and thus a lattice of rank d <
rank(A) =r +s— 1.

Lemma 8. Part one follows from the definition. Part two uses the fact that o € O iff [Ngg(a)| =1 and
> log(u(a)) = log | Nk g(a)|. For part three: the preimage under log of any open subset of A is an open
subset of R™ which contains finitely many () for o € O as «(Ok) is a lattice in R™.

(8.3) O vs log(OF).

Proposition 9. The kernel of logot|o,—o consists of the roots of unity in K and is finite. Thus O is a
finitely generated abelian group of the same rank as log (O} ).

Proof. f & € Ok — 0 has logi(a) = 0 then |o(a)] = 1 for all embeddings ¢ : K — C. The minimal
polynomial of av is Po(X) =[[(X —o(a)) = X" +ap 1 X" 1+ +a1X + ap € Z[X] and
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and so P, (X) is in the finite set F = {X" 4+ a, 1 X" '+ -+ a1 X +ap € Z[X]||ap—; < (?)} But the same
is true of P, for all k since the Galois conjugates of a* are af. Thus P, is in the same set. Since there are
infinitely many choices for k it follows that o = o' for at least two k # &k’ and thus « is a root of unity.
If ¢, € K then Q(¢,) C K and so ¢(n) = [Q(¢,) : Q] < [K : Q] which puts a bound on n and so K
contains finitely many roots of unity.
Therefore log 1(Of) = O /(K ) where p(K) is the finite group of roots of unity in K and the conclusion
follows. H



