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10 (-functions and L-functions
(1.1) Let K be a number field.
Definition 1. The Dedekind {-function is
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Proposition 2. (x(s) converges and is holomorphic for Re(s) > 1.

Proof.

Writing a,, for the number of ideals of norm n it follows that ng(t) = 22:1 a, = O(t) and convergence
follows from the lemma. O

(1.2) “Analytic continuation”
Theorem 3 (Analytic Class Number Formula). Let K be a number field.

1. The Riemann (-function ((s) can be extended to a meromorphic function on Res > 0 with a simple

pole at s =1 and
lim(s —1)¢{(s) =1
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2. The Dedekind (-function Cx(s) can be extended to a meromorphic function on Res > 1—1/[K : Q]
with a simple pole at s = 1 with
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Proof. Part one. The function f(s) = (1 —2'7%)((s) can be written as

T (s — 1)C (5) =

for Res > 1 but the latter is is holomorphic for Res > 0 by the lemma as Zzzl(fl)”*l = O(1). This
implies that ((s) is meromorphic with poles possibly when 217% = 1, i.e., when (1 — s)log(2) = 2mik for
some k € Z.



Similarly the function g(s) = (1 — 317%)((s) can be written as
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g(s) = Z anpn=°
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for Res > 1 where a,, = 1 unless 3 | n in which case n = —2. Again g(s) makes sense as a holomorphic
function when Res > 0 and so ¢(s) is meromorphic with poles possibly when 3!7% = 1, i.e., when (1 —
s)log(3) = 2mil for some £ € Z.

Suppose ((s) has a pole at some s such that (1 — s)log(2) = 2mik and (1 — s)log(3) = 2mif. Then 2¢ = 3*
and so £ = k =0 and s = 1. Thus ((s) is meromorphic with only possible pole at s = 1. Let’s compute the
residue:
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Part two. Recall that for Res > 1 one has

nig(n) —ng(n—1)
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Cx (s) :
K 2 -
= hgr((s) + Z ni(n) — an;L — 1) — khg

n=1

Again by our lemma it follows that (i (s) — hxr((s) is holomorphic for Re(s) > 1 — 1/[K : Q] since

> (nk(n) = nk(n—1) = kh) = ng(t) — kht = Ot~/

n=1

This implies that (x (s) — hxk((s) is holomorphic for Res > 1—1/[K : Q] and so the same must be true
of (i (s). For the residue computation note that

lim (s — 1)Ck(s) = lim (s = 1)(Cx(s) = hicn(s)) + ik Tim (s = 1)¢()
= hK/{

as in the first limit one has the product of two functions which are continuous at s = 1.

(1.3) Functional equation.
Recall the Euler T" function:

We will use two variants:



Lemma 4. [. T'(z+1) =2[(x)

1

2. T'(z)T (x + 2> =2'72"/7[(2z) and x = L gives T'(1/2) = /7.

3. T(n)=(n—1)! forn>1.
Proof. Not given. O

Theorem 5. Let K be a number field with r1 real and 2ro complex places. Write dx = | disc(K)| and

A(s) = d3/Tg (5)" Te(s)Cre (s)
Then A(s) = A(1 — s).
Proof. Not given. Proof is better given in a different language. O

Corollary 6 (A basic version of Birch and Swinnerton-Dyer). The function (x has a zero of order r1+ry—1
at s =0 and )
w0 _ hx Rk
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Here the order of vanishing r1+r2—1 is the rank of the finitely generated abelian group O = Resg /g G (Z).

Proof. Next time. O



