Introduction to Algebraic Number Theory Lecture 27

Andrei Jorza

10ζ-functions and L-functions

(10.9) The Chebotarëv density theorem (continued).

Proof of the Chebotarev density theorem when $K=\mathbb{Q}$. The Kronecker-Weber theorem states that if K / \mathbb{Q} is abelian Galois then $K \subset \mathbb{Q}\left(\zeta_{n}\right)$ for some n. We already proved Chebotarev for $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$ and so by the previous proposition Chebotarev is true for all K / \mathbb{Q} Galois.

Remark 1. To prove Chebotarev in general one may either use cyclotomic extensions, as Chebotarëv originally did, or use class field theory, namely:

1. a description of all abelian extensions of K,
2. an identification of $\mathrm{Frob}_{\mathfrak{p}}$ with elements of K for each such abelian extension,
3. a generalization of the nonvanishing at $s=1$ of L-functions.
(10.10) Applications of Chebotarëv.

Example 1. Let L / K be a Galois extension of number fields and \mathfrak{p} a prime ideal of K. Then \mathfrak{p} splits completely in L if and only if the conjugacy class $\operatorname{Frob}_{\mathfrak{p}}=1$. Thus the density of prime ideals which split completely in L is $1 /[L: K]$.
Example 2. Let $a \in \mathbb{Z}$ be an integer. Then $\left(\frac{a}{p}\right)=1$ if and only if $X^{2}-a$ splits $\bmod p$ if and only if p splits completely in $\mathbb{Q}(\sqrt{a})$. When a is a perfect square then the density of p with $\left(\frac{a}{p}\right)=1$ is 1 and when a is not a perfect square then it is $1 / 2$.

Example 3 (Dedekind's theorem, from homework 6). Let L / K be a Galois extension of number fields. Let $f \in \mathcal{O}_{K}[X]$ be an irreducible monic polynomial which is separable $\bmod \mathfrak{p}$ for a prime ideal \mathfrak{p} of K. Write $f(x) \equiv \prod_{i=1}^{r} f_{i}(X)(\bmod \mathfrak{p})$ where f_{i} are irreducible polynomials of degree n_{i} in $k_{\mathfrak{p}}$. View $\operatorname{Gal}(L / K)$ as a subgroup of S_{n} the group of permutations of the n distinct roots of f. Then the conjugacy class Frob $_{p}$ consists of elements whose image in S_{n} are products of r cycles of lengths n_{1}, \ldots, n_{r} (up to reordering of the cycles).
Example 4 (Applications of Dedekind). Consider $f(X)=X^{3}-2$ with splitting field $\mathbb{Q}\left(\sqrt[3]{2}, \zeta_{3}\right)$ with Galois group S_{3} over \mathbb{Q}. There are three conjugacy classes: 1,3 transpositions and 2 three-cycles. By Dedekind's theorem Frob_{p} is 1 (resp. transpositions, resp. three-cycles) if and only if $X^{3}-2 \bmod p$ is a product of linear factors (resp. a linear times an irreducible quadratic, resp. one irreducible cubic). Thus the density of primes p such that $X^{3}-2 \bmod p$ is a product of linear factors is $1 / 6$, a linear times an irreducible quadratic is $3 / 6=1 / 2$ and an irreducible polynomial is $2 / 6=1 / 3$.
Example 5. Let $f \in \mathbb{Z}[X]$ be an irreducible monic polynomial with Galois group S_{n}. Write $n=m_{1} n_{1}+$ $\cdots m_{k} n_{k}$ where $n_{1}>n_{2}>\ldots>n_{k}>0$ and $m_{i} \geq 1$. The density of primes p such that $f(X) \bmod p$ splits as a product of m_{1} polynomials of degree n_{1} times m_{2} polynomials of degree n_{2} etc is

$$
\frac{1}{\prod n_{i}^{m_{i}} \prod m_{i}!}
$$

Example 6. The density of primes p such that when $1 / p=0 . a_{1} \ldots a_{k}\left(b_{1} \ldots b_{\ell}\right)$ is written in decimal notation the period $b_{1} \ldots b_{\ell}$ has an odd number of digits is $1 / 3$.

11 Special values of the ζ-function and of L-functions

(11.1) Conductors of characters.

A character $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$also gives a composite character $\chi:(\mathbb{Z} / N d \mathbb{Z})^{\times} \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$for any d. Thus a character $\chi \bmod N$ is also a character $\bmod N d$ and so given χ there is an ambiguity on what group it is a character of. In particular, given $\chi \bmod N$ there might exists $d \mid N$ such that χ comes from a character $\bmod d$. For example the trivial character always comes from a character mod 1 .

Definition 7. The conductor f_{χ} of a character χ is the smallest integer such that χ is a character $\bmod f_{\chi}$.
For example the character mod 8 taking 1 and 5 to 1 and 3 and 7 to -1 in fact comes from the character $\bmod 4$ taking k to $(-1)^{(k-1) / 2}$ and so has conductor 4 .
(11.2) Bernoulli numbers.

The Bernoulli numbers B_{n} are the coefficients

$$
\frac{t}{e^{t}-1}=\sum B_{n} \frac{t^{n}}{n!}
$$

If χ is a character then $B_{n, \chi}$ is defined by

$$
\sum_{a=1}^{f_{\chi}} \frac{t e^{a t}}{e^{f_{\chi} t}-1}=\sum_{n \geq 0} B_{n, \chi} \frac{t^{n}}{n!}
$$

with

$$
B_{1, \chi}=\frac{1}{f_{\chi}} \sum_{a=1}^{f_{\chi}} \chi(a) a
$$

In fact one can show that the definition of $B_{n, \chi}$ doesn't change if one replaces f_{χ} in the definition by any multiple of it.
(11.3) The ζ-function.

From homework 5 we take

$$
\begin{aligned}
\zeta(2 n) & =\frac{(-1)^{n+1} B_{2 n}(2 \pi)^{2 n}}{2(2 n)!} \\
\zeta(1-2 n) & =-\frac{B_{2 n}}{2 n}
\end{aligned}
$$

(11.4) L-functions at negative integers.

Remark that if χ is a character modulo its conductor f_{χ} then we can also treat it as a character modulo $f_{\chi} d$ but the L-functions are not the same. Because of this we'll write $L(\chi, s)$ when χ is taken modulo its conductor and otherwise write $L\left(\chi \bmod f_{\chi} d, s\right)$:

$$
L(\chi, s)=\prod_{p \mid d, p \nmid f_{\chi}}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1} L\left(\chi \bmod f_{\chi} d, s\right)
$$

Theorem 8. If χ is a character modulo its conductor and $n \geq 1$ then

$$
L(\chi, 1-n)=-\frac{B_{n, \chi}}{n}
$$

Proof. This is a long but not difficult computation in complex analysis.

