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10 (-functions and L-functions
(10.9) The Chebotarév density theorem (continued).

Proof of the Chebotarev density theorem when K = Q. The Kronecker-Weber theorem states that
it K/Q is abelian Galois then K C Q((,) for some n. We already proved Chebotarev for Q({,)/Q and so
by the previous proposition Chebotarev is true for all K/Q Galois. O

Remark 1. To prove Chebotarev in general one may either use cyclotomic extensions, as Chebotarév origi-
nally did, or use class field theory, namely:

1. a description of all abelian extensions of K,
2. an identification of Frob, with elements of K for each such abelian extension,
3. a generalization of the nonvanishing at s = 1 of L-functions.

(10.10) Applications of Chebotarév.

Example 1. Let L/K be a Galois extension of number fields and p a prime ideal of K. Then p splits
completely in L if and only if the conjugacy class Frob, = 1. Thus the density of prime ideals which split
completely in L is 1/[L : K].

Example 2. Let a € Z be an integer. Then (;) = 1 if and only if X2 — a splits mod p if and only if p

splits completely in Q(y/a). When a is a perfect square then the density of p with (%) =11is 1 and when a
is not a perfect square then it is 1/2.

Example 3 (Dedekind’s theorem, from homework 6). Let L/K be a Galois extension of number fields. Let
f € Ok[X] be an irreducible monic polynomial which is separable mod p for a prime ideal p of K. Write
f(z) = [[;_, fi(X) (mod p) where f; are irreducible polynomials of degree n; in ky. View Gal(L/K) as
a subgroup of S, the group of permutations of the n distinct roots of f. Then the conjugacy class Frob,
consists of elements whose image in S,, are products of r cycles of lengths ny,...,n,. (up to reordering of the
cycles).

Example 4 (Applications of Dedekind). Consider f(X) = X —2 with splitting field Q(+¥/2, ¢3) with Galois
group S3 over Q. There are three conjugacy classes: 1, 3 transpositions and 2 three-cycles. By Dedekind’s
theorem Frob, is 1 (resp. transpositions, resp. three-cycles) if and only if X® —2 mod p is a product of
linear factors (resp. a linear times an irreducible quadratic, resp. one irreducible cubic). Thus the density of
primes p such that X® —2 mod p is a product of linear factors is 1/6, a linear times an irreducible quadratic
is 3/6 = 1/2 and an irreducible polynomial is 2/6 = 1/3.

Example 5. Let f € Z[X] be an irreducible monic polynomial with Galois group S,,. Write n = min; +
-+ -mgng where ny > ng > ... > nyg > 0 and m; > 1. The density of primes p such that f(X) mod p splits
as a product of m; polynomials of degree n, times msy polynomials of degree ny etc is
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Example 6. The density of primes p such that when 1/p = 0.a1 ... ag(b; ... by) is written in decimal notation
the period b ...b; has an odd number of digits is 1/3.

11 Special values of the (-function and of L-functions

(11.1) Conductors of characters.

A character x : (Z/NZ)* — C* also gives a composite character x : (Z/NdZ)* — (Z/NZ)* — C* for
any d. Thus a character x mod N is also a character mod Nd and so given y there is an ambiguity on
what group it is a character of. In particular, given xy mod N there might exists d | N such that x comes
from a character mod d. For example the trivial character always comes from a character mod 1.

Definition 7. The conductor f, of a character x is the smallest integer such that x is a character mod f,.

For example the character mod 8 taking 1 and 5 to 1 and 3 and 7 to —1 in fact comes from the character
mod 4 taking k to (—1)*~1/2 and so has conductor 4.

(11.2) Bernoulli numbers.
The Bernoulli numbers B,, are the coefficients
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If x is a character then B, , is defined by
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In fact one can show that the definition of B, , doesn’t change if one replaces f, in the definition by any

multiple of it.

(11.3) The (-function.
From homework 5 we take

((1-2m) = -2

(11.4) L-functions at negative integers.

Remark that if x is a character modulo its conductor f, then we can also treat it as a character modulo
fxd but the L-functions are not the same. Because of this we’ll write L(x, s) when x is taken modulo its
conductor and otherwise write L(x mod f,d, s):

L(x,s) = H (1— Xp(f))_ L(x mod fy,d,s)

P|d,p)(fx

Theorem 8. If x is a character modulo its conductor and n > 1 then

B
Lix,1—n) = —2mx
(x,1—n) n
Proof. This is a long but not difficult computation in complex analysis. O



