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10 ζ-functions and L-functions
(10.9) The Chebotarëv density theorem (continued).

Proof of the Chebotarev density theorem when K = Q. The Kronecker-Weber theorem states that
if K/Q is abelian Galois then K ⊂ Q(ζn) for some n. We already proved Chebotarev for Q(ζn)/Q and so
by the previous proposition Chebotarev is true for all K/Q Galois.

Remark 1. To prove Chebotarev in general one may either use cyclotomic extensions, as Chebotarëv origi-
nally did, or use class field theory, namely:

1. a description of all abelian extensions of K,

2. an identification of Frobp with elements of K for each such abelian extension,

3. a generalization of the nonvanishing at s = 1 of L-functions.

(10.10) Applications of Chebotarëv.

Example 1. Let L/K be a Galois extension of number fields and p a prime ideal of K. Then p splits
completely in L if and only if the conjugacy class Frobp = 1. Thus the density of prime ideals which split
completely in L is 1/[L : K].

Example 2. Let a ∈ Z be an integer. Then
(
a
p

)
= 1 if and only if X2 − a splits mod p if and only if p

splits completely in Q(
√
a). When a is a perfect square then the density of p with

(
a
p

)
= 1 is 1 and when a

is not a perfect square then it is 1/2.

Example 3 (Dedekind’s theorem, from homework 6). Let L/K be a Galois extension of number fields. Let
f ∈ OK [X] be an irreducible monic polynomial which is separable mod p for a prime ideal p of K. Write
f(x) ≡

∏r
i=1 fi(X) (mod p) where fi are irreducible polynomials of degree ni in kp. View Gal(L/K) as

a subgroup of Sn the group of permutations of the n distinct roots of f . Then the conjugacy class Frobp

consists of elements whose image in Sn are products of r cycles of lengths n1, . . . , nr (up to reordering of the
cycles).

Example 4 (Applications of Dedekind). Consider f(X) = X3−2 with splitting field Q( 3
√

2, ζ3) with Galois
group S3 over Q. There are three conjugacy classes: 1, 3 transpositions and 2 three-cycles. By Dedekind’s
theorem Frobp is 1 (resp. transpositions, resp. three-cycles) if and only if X3 − 2 mod p is a product of
linear factors (resp. a linear times an irreducible quadratic, resp. one irreducible cubic). Thus the density of
primes p such that X3−2 mod p is a product of linear factors is 1/6, a linear times an irreducible quadratic
is 3/6 = 1/2 and an irreducible polynomial is 2/6 = 1/3.

Example 5. Let f ∈ Z[X] be an irreducible monic polynomial with Galois group Sn. Write n = m1n1 +
· · ·mknk where n1 > n2 > . . . > nk > 0 and mi ≥ 1. The density of primes p such that f(X) mod p splits
as a product of m1 polynomials of degree n1 times m2 polynomials of degree n2 etc is

1∏
nmii

∏
mi!
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Example 6. The density of primes p such that when 1/p = 0.a1 . . . ak(b1 . . . b`) is written in decimal notation
the period b1 . . . b` has an odd number of digits is 1/3.

11 Special values of the ζ-function and of L-functions
(11.1) Conductors of characters.

A character χ : (Z/NZ)× → C× also gives a composite character χ : (Z/NdZ)× → (Z/NZ)× → C× for
any d. Thus a character χ mod N is also a character mod Nd and so given χ there is an ambiguity on
what group it is a character of. In particular, given χ mod N there might exists d | N such that χ comes
from a character mod d. For example the trivial character always comes from a character mod 1.

Definition 7. The conductor fχ of a character χ is the smallest integer such that χ is a character mod fχ.

For example the character mod 8 taking 1 and 5 to 1 and 3 and 7 to −1 in fact comes from the character
mod 4 taking k to (−1)(k−1)/2 and so has conductor 4.

(11.2) Bernoulli numbers.
The Bernoulli numbers Bn are the coefficients

t

et − 1
=
∑

Bn
tn

n!

If χ is a character then Bn,χ is defined by

fχ∑
a=1

teat

efχt − 1
=
∑
n≥0

Bn,χ
tn

n!

with

B1,χ =
1

fχ

fχ∑
a=1

χ(a)a

In fact one can show that the definition of Bn,χ doesn’t change if one replaces fχ in the definition by any
multiple of it.

(11.3) The ζ-function.
From homework 5 we take

ζ(2n) =
(−1)n+1B2n(2π)2n

2(2n)!

ζ(1− 2n) = −B2n

2n

(11.4) L-functions at negative integers.
Remark that if χ is a character modulo its conductor fχ then we can also treat it as a character modulo

fχd but the L-functions are not the same. Because of this we’ll write L(χ, s) when χ is taken modulo its
conductor and otherwise write L(χ mod fχd, s):

L(χ, s) =
∏

p|d,p-fχ

(
1− χ(p)

ps

)−1
L(χ mod fχd, s)

Theorem 8. If χ is a character modulo its conductor and n ≥ 1 then

L(χ, 1− n) = −Bn,χ
n

Proof. This is a long but not difficult computation in complex analysis.
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