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Recall 0
Let X be a projective variety. Let I ⊂ K[x0, · · · , xn] be a prime ideal generated
by a homogeneous ideal. Then K[X] = k[x0, · · · , xn]/I is an integral domain, with
K(X) it’s fraction field, and dim(X) = trdegK(X)/K, and recall that X is smooth
at P if the Jacobian has rank equal to dimX. Think of a point of X over an alge-
braic extension as a Gal(K̄/L) orbit of points over K̄. Last time we saw that for

a curve C, if P is smooth then K(C)p = { fg ∈ K(C), g(P ) 6= 0} is a division ring.

mP = { fg ∈ K(C)P | f(P ) = 0} is its unique maximal ideal, and all ideal are of the

form mn
P for n > 0. For f ∈ K(C)p ordP (f) is the largest n such that f ∈ mn

p . f
is a uniformizer if ordP (f) = 1. Think of ordP (f) as the order of the zero at P if
n is positive, and the order of the pole is if n is negative.

Ramification

Let ψ : C1 → C2 be a morphism between twp smooth projective curves C1, C2.
Recall this induces a map ψ∗ : K(C2 → C1) and degψ = [K(C1) : ψ∗K(C2)].
Definition 1 Let Q = ψ(P ) and define eP/Q,ψ = ordP (ψ∗tQ), where tQ is the
uniformizer.
Example 2 Let

ψ : P1 → P1

(x : y)→ (x3(x− y)2 : y5)

Here deg ψ = 5. Let little x x = x
y , y 6= 0. Then ψ(x) = x3(x − 1)2, and with

∞ = (1 : 0), ψ(∞) =∞. The uniformizer at Q = λ is x−λ = tQ. ψ∗(tQ) = ψ(x)−
λ = x3(x−1)2−λ, with order of vanishing 2. We have that Pλ(x) = x3(x−1)2−λ.

P
′

λ(x) = x2(x − 1)(5x − 3). They are both zero if either i. x = 0 and λ = 0, and

e0|0,ψ = 3, ii. x = 1 λ = 0, e1|0,ψ = 2, iii. x = 3/5, λ = 3222

55 , e3|5,ψ = 2. e∞|∞ = 5.
These are all P/Q where eP/Q,ψ > 1, i.e. P/Q ramifies.
Proposition 3

a.
∑

P∈ψ−1

eP/Q,ψ = deg ψ.

b. Almost all P/Q are unramified.
c. eP/R = eP/QeP/R.
Suppose a field K of characteristic p is perfect, i.e. φ(x) = xp is surjective onto
K. This gives a map of curves: φ : C → C(p), where C = vanishing of I =

(f1(xi), · · · , fn(xi). and C(p) = vanishing of I(p) = (f
(p)
i ), f =

∑
aIx

I , f (p) =

1
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aIφ(xI). (eg) C = the line x+ 26 = 3z in P2. Then C(p) = the line xp + 2yp =

3zp ⊂ P2 and φ(x0 : · · · : xn) = (xp0, · · · , xpn). If f(x) = 0, then it is easy to check

that f (p)(φ(x)) = 0. fp(φ(x)) =
∑

apIx
pI = (

∑
aIx

I)p = 0. so φ : C → C(p) is a

morphism.
Proposition 4
(a.) φ has deg p
(b.) φ is purely inseparable, ie. K(C)/K(C(p)) is purely inseparable of deg p.
Proposition 5
(1) If a ∈ K(C)−K, then K(C)/K(a) is finite.
(2) If a /∈ K(C(p)), then K(C)/K(a) is separable.
(3) If t = uniformizer at a smooth point K(C)/K(t) is finite separable.
Proof (1) Use what we learned from last time for K(C)/K(t), t uniformizer.
a. Since it is a finite extension, K(a, t)/K(t) is finite. There exists a Ak(t) ∈ K(t)

such that
∑

Ak(t)ak = 0. Reshuffle, and get that t satisfies a polynomial K(a).

so k(t, a)/k(a) is finite.
Theorem 6
(1) Frac(OK(C),S) = K(C)
(2) OK(C),S = Dedekind Domain
OK(C),S may just be K. e.g. OK(P1),φ = K finite field.
Application 7
P (x), Q(x) ∈ Fq[x] co-prime polynomial irreducible f ∼= PmodQ.

δ(f(x) ∈ Fq[x]) =
1

#(Fq[x]/Q(x))x


