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Let S ⊂ C, Recall that OS = OK(C),S = {f ∈ K(C)|all poles of f ⊂ S}.
Proposition 1
(1) Oφ = K
(2) If S 6= φ thenOS −K 6= φ.
Proof
(1) Pick f ∈ Oφ, f : C → P1. f has no pole so f is not surjective. Hence f ∈ K is
constant.
(2) Later, follows from Riemann Roch.
Proposition 2
(3) Frac(OS) = K(C)
Proof:
(3) Pick f ∈ Oφ K → K(C)/K(a) finite extension. It is separable iff a ∈ K(C(p)).

If a /∈ K(C(1)), then by a primitive element theorem, K(C) = K(a)(b) for some
b. We claim you can always write K(C) = K(a)K(b) where a, b ∈ OS . Suppose
a ∈ K(C(p)). Pick P /∈ S, tp = uniformizer. tp ∈ K(C(p)). Label poles of tp outside
of S, p1, · · · pr with orders n1, · · · , nr. since pi /∈ S → a(pi) 6=∞ ∈ K̄, so algebraic
over K. There exists Qi ∈ K[x] such that Qi(a(pi) = 0, ci = Qi ◦ a. Then
1. ci(pi) = 0
2. ci ∈ K(C(p)) b/c a does. Set a′ = t ∩ cni

i a
′(Pi) well defined t pole order ni.

ci zero order ≥ 1 at Pi. So t ∩ cni
i has no pole at Pi. a’(Q) well defined for

Q /∈ S ∪ {Pi}, a′(Q) ∈ K̄. =⇒ t′(Q) ∈ K̄ so a′ ∈ OS and also a′ /∈ K(C(p)). We
get an element of OS−K(C(p)), either a or a′. Thus K(C) = K(a, b) where a ∈ OS
and b ∈ K(C) . Take b′ = b ∩ dmj

j . If b /∈ OS , then it has poles Q1, c . . . Qs ∈ S
with orders m1, · · · ,ms. a(Qi) ∈ K̄, so dj = min poly of a(Qi) evaluated at a.
b′ = b ∩ dmj

j ∈ OS with the d
mj

j ∈ OS . So K(a, b) = K(a, b′). So K(C) = K(a, b)

where a, b ∈ OS . K(C) ⊃ Frak(OS) ⊃ K[a, b] ⊃ K(a, b)−K(C). �
Proposition 3
(4) Let S 6= φ. If p ⊂ Os prime ideal, then OS/p is algebraic/K.
(5) Every prime ideal of p of OS is of the form p = OS ∩mP , (which is maximal),
P ∈ C(k̄).
Proof:
Pick a ∈ p − K, where p is a nontrivial ideal and K(C)/K(a) is finite. Let

b ∈ OS ⊂ K(C) be algebraic over K(a).
∑ Pi(a)

Qi(a)
bi = 0. Clearing denomina-

tor, owe get that b is algebraic over K[a]., Therefore, b (mod p) is algebraic over
K[a]/(p ∩K[a] = K. a ∈ p so b (mod p) is algebraic over K.
(5). (Sketch of a proof) Let p ⊂ OS be a prime ideal. OS/p is algebraic over K. so
φ : OS/p→ K̄. We can write K(c) = K(a, b) for a, b ∈ OS . Then 0→ P→ Os →
K̄ → 0. For a, b ∈ OS , the map K(X,Y ) → K(a, b) = K(c) is surjective. Can
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think of C as a curve in P2 with vars X,Y . Take P = ψ(a), ψ(b) as a point in C(K̄).
If f ∈ K(C) in the X,Y parameters, then f(P ) = f(ψ(a), ψ(b)) = ψ(f(a, b)), and
mP = {f |f(P ) = 0}{f |ψ(f(a, b)) = 0} = ker ψ = p.�

Recall that R is a Dedakind domain if (a), all p are maximal (b) Noetherian,
and (c) integrally closed.

Theorem 4 Let S 6= φ.
(1) ∀p prime, ∃p−1 = OS-submodule of K(C) such that pp−1 = OS .
(2) Every I ⊂ OS factors uniquely into prime ideals.
(3) OS is Noetherian.
(4) OS is Integrally closed.
(5) =⇒ OS is Dedakind (e.g. φ(OS) = class group.
Proof
(1) p = mp for some p ∈ C(K̄)
p−1 := {f ∈ K(C)|fhas no pole atpor simple pole}
pp−1 = {fg|f(p) = 0, g(p) pole order ≤ 1} ⊂ OS So OS ⊂ pp−1. t = uniformizer
at p so pK(C)p = (t). 1

t pole order 1 at p. ∀f ∈ OS , f = f tt−1 ∈ pp−1

(2) Existence Remarks: ∩k≥1pk = 0 ∀p, ∩all pi distinctpi = 0

This is true because f ∈ K(C) has finitely many poles. I1 = I = ideal. ⊂ p1 if equal
I = p1 If not, I2 = I1p

−1
1 = p2 Either I = p1p2 or not. If not, set I3 = I2p

−1
2 ⊂ p3.

If not does not terminate, then I ⊂ p1 · · · pk as k → ∞ but ∩i→∞pi · · · pk = 0 so
must terminate, and therefore I = p1 · · · pk for primes pi. For uniqueness, note that
if
∏

pn =
∏

qm, then it must be that pi = qj for some i ≤ n, j ≤ m. Multiply by

p−1i and repeat.


