ALGEBRAIC NUMBER THEORY
LECTURE 34

NOTES BY NATHAN VANDERWERF

Let S C C, Recall that Og = Ok (cy,s = {f € K(C)|all poles of f C S}.
Proposition 1

(1) Op =K
(2) If S # ¢ thenOg — K # ¢.
Proof

(1) Pick f € Oy, f: C — PL. f has no pole so f is not surjective. Hence f € K is

constant.

(2) Later, follows from Riemann Roch.

Proposition 2

(3) Frac(Og) = K(C)

Proof:

(3) Pick f € Oy K — K(C)/K(a) finite extension. It is separable iff a € K(C®).

If a ¢ K(CW), then by a primitive element theorem, K(C) = K(a)(b) for some

b. We claim you can always write K(C) = K(a)K(b) where a,b € Og. Suppose

a € K(OW). Pick P ¢ S, t, = uniformizer. t, € K(C®)). Label poles of t, outside

of S, p1,---p, with orders ny,--- ,n,. since p; ¢ S — a(p;) # 0o € K, so algebraic

over K. There exists Q; € K[z] such that Q;(a(p;) =0, ¢; = Q; o a. Then

1. Ci(pi) =0

2. ¢; € K(CP) b/c a does. Set a’ = tNc}ia’(P;) well defined t pole order n;.

¢; zero order > 1 at P;. So tN ¢} has no pole at P,. a’(Q) well defined for

Q¢ SU{P}, d(Q) e K. = t'(Q) € K sod € Og and also ¢’ ¢ K(C®). We

get an element of Og — K (CP), either a or a’. Thus K(C) = K (a,b) where a € Og

and b € K(C) . Take V' = bﬂd;nj. If b ¢ Og, then it has poles Q1,¢...Qs € S

with orders myq, -+ ,ms. a(Q;) € K, so d;j = min poly of a(Q;) evaluated at a.

b =bnd;’ € Og with the d;” € Og. So K(a,b) = K(a,b'). So K(C) = K(a,b)

where a,b € Og. K(C) D Frak(Og) D Kla,b] D K(a,b) — K(C). O

Proposition 3

(4) Let S # ¢. If p C Os prime ideal, then Og/p is algebraic/K.

(5) Every prime ideal of p of Og is of the form p = Og N mp, (which is maximal),

P e C(k).

Proof:

Pick a € p — K, where p is a nontrivial ideal and K(C)/K(a) is finite. Let

b € Og C K(C) be algebraic over K(a). > g’((i)) b* = 0. Clearing denomina-

tor, owe get that b is algebraic over K|[a]., Therefore, b (mod p) is algebraic over

Kla]/(p N Kla) = K. a € p so b (mod p) is algebraic over K.

(5). (Sketch of a proof) Let p C Og be a prime ideal. Og/p is algebraic over K. so

¢ :Os/p — K. We can write K(c) = K(a,b) for a,b € Og. Then 0 — B — O, —

K — 0. For a,b € Og, the map K(X,Y) — K(a,b) = K(c) is surjective. Can
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think of C' as a curve in P? with vars X, Y. Take P = 1(a),(b) as a point in C(K).
If f € K(C) in the X,Y parameters, then f(P) = f(y(a),(d)) = ¥(f(a,b)), and

mp = {f|f(P) = 0H{f|¢(f(a,b)) = 0} = ker ¢ = p.00

Recall that R is a Dedakind domain if (a), all p are maximal (b) Noetherian,
and (c) integrally closed.

Theorem 4 Let S # ¢.
(1) Vp prime, Ip~! = Og-submodule of K(C) such that pp~* = Og.
(2) Every I C Og factors uniquely into prime ideals.
(3) Og is Noetherian.
(4) Og is Integrally closed.
(5) = Og is Dedakind (e.g. ¢(Og) = class group.
Proof
(1) p = m,, for some p € C(K)
p~!:={f € K(C)|fhas no pole atpor simple pole}

L= {fglf(p) =0, g(p) pole order < 1} C Og So Og C pp~!. t = uniformizer
at p so pK(C), = (t). 1 pole order 1 at p. Vf € Og, f = ftt7! € pp~?
(2) Existence Remarks: ﬁkzlpk =0Vp, Ny p; distinctPi =0
This is true because f € K(C) has finitely many poles. I; = I = ideal. C p; if equal
I =y, If not, Iy = I1p;* = py Bither I = pipy or not. If not, set Iy = lop; ' C ps.
If not does not terminate, then I C py---pg as k — 0o but N;eoPi---Pr = 0 so
must terminate, and therefore I = p; - - - py, for primes p;. For uniqueness, note that
if [Tpn = [[dm, then it must be that p; = ¢; for some ¢ < n,j < m. Multiply by

pi_1 and repeat.



