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Definition 0.1 Let C' be a smooth projective curve. We define the cotangent space:

Qc ={K(C) — wvector space generated by df, f € K(C)}
{d(f +g) = df +dg, d const =0, d(fg) = fdg+ gdf}

If ¢ : C1 — Cy is a morphism then we have a map ¢* : Qc, — Qe given by:

o (D fi-dg) = oo (£ delg).

Remark: ¢ is purely inseparable if ¢* = 0.

Proposition 0.2 Pick w € Q¢, where Q¢ is a 1-dimensional K(C)-vector space. Let P be a point on C,

tp a uniformizer at P. Then we can write w = gdtp, for g,tp € K(C).
Definition 0.3 Define ordp(w) := ordp(g). This is independent of the choice of tp.

Definition 0.4 Define

div(w) = Y ordp(w) - [P].

We can show that for all but finitely many P, ordp(w) = 0 and so div(w) € Div(C). Now, we = f - w is also
a generator of Q¢ (1-dimensional) and div(wz) = div(f -w) = div(f) + div(w). So, div(w) depends on w, but
its projection to Pic(C) = Div(C)/div(K(C')) does not.

Definition 0.5 We define the Canonical Class of C to be K¢ = div(w) € Pic(C).

Example Let C = P!. We have K(C) = K(t), Qp = K(t)dt, df (t) = f'(t)dt. Let w = dt. For all points
A # 0o in P!, the uniformizer is ¢y =t — A,
w w dt

dy - di-n b

and ordy(dt) = 0. If A = oo, the uniformizer is to = 1/t,

w dt 9

dtee  d(¥) 7

t

50 orde (dt) = orde (—t?) = —2. Therefore, Kpi = —2[o0], t? = t;2, so Kp = —2, Pic(P!) = Z.



Example Let C =y? = (z —e1)(z —e2)(x —e3). P, = (e;:0:1).

div(y) = [P1] + [Ps] + [Ps] — 3[)]
div(z — €;) = 2[P;] — 2[o0]

Let w = dz, P = P;. We have ordp, (y) = 1.

dx
ordp, (w) = ordp, [ —
s " (dy>
2ydy = Z(m —¢;)(z —ej)dz
i<j
dx 2y

dy (e —e¢))

d
ordp, <d;j> = ordp, (y) — ordp, Z(x —e)(z—e) | =1

i<j

If P ¢ {Pl,P27P3,OO}, ordp(das) =0.

Finally, if P = oo we use projective coordinates X,Y, Z with x = X/Z and y = Y/Z. Then we previously
computed that ords(Z) = 3 and orde(X) = 1 and so orde(z) = —2. We choose to, = z7/2 as a
uniformizer. Then

= ordy, — 2232 = -3

dx
ordeo (w) = orde =y

and so we deduce that
div(w) = [P1] + [Pa] + [P5] - 3[oc] = div(y)

Therefore div(w) = 0 in Pic(C) and the canonical class is therefore trivial.

1 Riemann-Roch
Definition 1.1 D =) np[P] € Div(C). Say D >0 if np > 0 for all P.

2(D) = {f € K(C)* ~0|div(f) > ~D}
= {/|VP, oxdp(f) > —np}

If np <0, f has a zero of order at least np at P. If np >0, f has a pole of order at most np at P.
Z (D) is a finite-dimensional K -vector space.

Remark: Let s € O(K),

Oy = {f| f has a pole at s, no other pole}

D=3

PesS
Z(nD) = {f pole of order at most n at P € S, no other pole}
0. = J Z((nD)
n>1

Theorem 1.2 Riemann-Roch Let £(D) = dimg £ (D).
(1) £(D) depends only on the image of D in Pic(C).



(2) €(0) =1. If deg(D) < 0, then £(D) = 0.
(8) There exists a g € Z called the genus of C. Furthermore,
UD)—U(Kc—D)=deg(D)—g—+1
Proof (1)
Z(D) —» Z(D + div(f))
g—=9/f

(2) fe ZD), f:C—PL If D=0, ‘div(f) > 0 so there are no poles. f is not surjective if and
only if f is constant. Thus, £(0) = K. Suppose deg D < 0. Then f € Z(D), div(f) > —D, and
deg(div(f)) > deg(—D) > 0 implies f = 0.

Corollary 1.3 (1) {(K¢) =g

(2) deg(Kc) =29 —2

(3) If deg D > 2g — 2, then ¢(D) = deg(D) — g + 1.

Proof (1) £(0) —U(Kc)=0—g+1 = {(Kc) =g.

(2) {(K¢)—£(0) =deg Kc —g+1 = deg K¢ =29 — 2.
—_—— =~

g 1

(3) We know ¢(D)—4(Kc—D) = deg D—g+1. Since deg(Kc—D) = deg(K¢)—deg(D) = 2g—2—deg D < 0.
So {(K¢c — D) = 0 and the result follows.

Example If C = P!, gp1 =0, and deg(Kp1) = —2. If E is an elliptic curve, gg = 1, so deg(Kg) =0

n#s >2g—2. It

Application of Riemann-Roch: If s # 0, Og 2 K. Pick n > 29 . Then deg( D) =
= U1 Z(nD) 2 K.

follows ¢(nD) = n#s—g+1 > g. Sofor n > 0, dimg £ (nD) > 1. So .i”(nD) oK.

2 Elliptic Curves and Weierstrass Equations

Definition 2.1 FE is an elliptic curve over K is a smooth projective curve of genus 1 containing a point 0.

Proposition 2.2 There exists

E < P?

0 o0
such that E is the vanishing of the Weierstrass equation
y2 + a1y + asy = 3+ a2m2 + asx + ag,
where T = %, y= % are the affine coordinates of P? (projective coordinates (X :Y : Z)).

Proof We compute

Z(2[0]) =2

£(3[0]) =deg[3-0] —g+1
L20)=Koz-K

£(3[0]) = deg[3-0] —g+1
Z3[0) =K @ 2K @ yK, z,y € K(E)



where the last line comes from the fact that £ (2[0]) C -Z(3]0]).
Define the map:

E < P?
P (x(P):y(P):1) for P#0
0—oo=(0:1:0).

Since +(x) > —2[0] and =+(y) > —3[0] it follows that 1, z, 22, 23, zy, y, y* € £(6]0]), where dim £ (6[0]) =
6. Thus the 7 functions 1, z, 22, 23, zy, y, y satisfy a linear dependence. This linear dependence has the form

y2 + a1y +asy = 28 + a2x2 + agx + ag

for some a; € K and is called a Weierstrass equation for F.



