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1 April 23, 2014 - Function Fields and Hecke Theory

Hecke Theory is a fancy way of saying L-functions and their functional equations. Let K = Fq where
q = pr, C a smooth projective curve over K, and C(K̄) =

{
all points on C with coefficients in K̄

}
. We

defined,

Div(C) =
⊕

P∈C(K̄)

[P ] · Z

Let Div(C/K) be the abelian subgroup of Div(C) defined by{∑
nP · [P ] |P ∈ C(K̄) such that nP are all equal if P varies in GK̄/K-orbit

}
Example Let C = P1, p ≡ 3 mod 4,

√
−1 ∈ Fp2 \ Fp. Then [

√
−1 : 1] ∈ Div(P1). We have,

[
√
−1 : 1] + [−

√
−1 : 1] ∈ Div(P1/Fp).

[P ] + [P̄ ]

Also, have

[1 : 1] + 2
(

[
√

1 : 1] + [−
√

1 : 1]
)
∈ Div(P1/Fp).

Idea: We have a correspondence

Div(C/K)↔ fractional ideals in K(C)∑
nP · [P ] 7→

∏
mnPP

Get,

∏
P/Gal. conjugacy

 ∏
Q∈P−Galois orbit

mQ

nP

.

We define:

deg : Div(C/K)→ Z
Div0(C/K) = ker(deg).

1



Remark: If f ∈ K(C), then div(f) ∈ Div(C/K). (Why? If σ ∈ Gal(K̄/K), then σ(f) = f because
f ∈ K(C). Then

σ(div(f))

=∑
nσ(P )[P ]=

∑
nP [σ(P )]

= div(σ(f)) = div(f)

=∑
nP [P ]

.

Definition We define:

Pic(C/K) = Div(C/K)/div(K(C))x

Cl(C)
class group

→ Pic0(C/K) = Div0(C/K)/div(K(C))x

Proposition 1.1 If D ∈ Div(C), define ||D|| = qdegD.

1. There exists D ∈ Div(C/K) with deg(D) = 1,

2. # {D ∈ Div(C/K), ||D|| ≤ n} <∞,

3. Pic0(C/K) is finite. hC = # Pic(C/K) (class number).

Proof (1) Non-trivial. If C(K) has a point P , D = [P ] ∈ Div(C/K). Otherwise, if C(K) = ∅, then D of
degree 1 would have to have positive and negative coefficients. Proof omitted.

(2) # {D ∈ Div(C/K), ||D|| ≤ n} < ∞ ⇐⇒ #
{
D ≥ 0 ∈ Div(C/K) s.t. degD < logq(n)

}
is bounded for

P ∈ C(K̄). P ∈ C(Fqr ) but not in any smaller field. Define

aP := r = #
{
σ(P ) |σ ∈ GK̄/K

}
.

Then

degD =
∑

P up to
Galois action

nP · aP (D ∈ Div(C/K))

C(Fqr ) is finite. e.g. C ⊂ PN, C(Fqr ) ⊂ PNFqr where PNFqr has size qr(N+1)−1.

Now, degD =
∑
nP · aP < m = logq(n) implies aP ≤ n for all P appearing in D. Thus P ∈

C(FaPq ) is finite. So all P appearing in D≥0 ∈ Div(C/K) must be among finitely many possibilities
C(Fq) ∪ C(Fq2) ∪ · · · ∪ C(Fqm). So,

D ⊂

{∑
nP [P ] |P ∈

m⋃
i=1

⊂ C(Fqi)

}
(nP ≥ 0)

degD =
∑

nPaP ≤ m

=⇒ nP ≤ m

and there are finitely many such D.

(3) Pic0(C/K) has size hC < ∞. Pick u ∈ Div(C/K) with deg(u) = 1. Pick D ∈ Pic0(C/K), n � 2g − 2.
Recall from Riemann Roch,

deg(D + nu) = n� 2g − 2

dimK̄ L (D + nu) = n− g + 1

Can pick f ∈ L (D + nu), f ∈ K(C)x such that div(f) ≥ −(D + nu). A = div(f) + D + nu ≥ 0,
deg(A) = n, so there are finitely many choices for A. Then D = A− div(f)− nu and the image of D in
Pic0(C/K) is A− n · u (finitely many choices for A and n · u is fixed). So Pic0(C/K) is finite.
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We have a correspondence

Div(C/K)↔ ideals

Pic0(C/K)↔ class group

Definition

ζC(s) :=
∑

D∈Div(C/K)
D≥0

1

||D||s
=

∑
D∈Div(C/K)

D≥0

q−(degD)·s

Remark: S a finite set of points of C(K̄), OS is a Dedekind domain.

ζOS (s) = ζC(s) =
∏
P∈S

(
1− 1

qaP ·s

)
Theorem 1.2 (1) Functional equation:

ζC(s) =
P (q−s)

(1− q−s)(1− q1−s)

where P (z) ∈ Z[z] of degree 2g. P (z) satisfied P (z) = qgz2gP ( 1
qz ).

(2) (Analytic Class Number Formula) P (0) = 1, P (1) = hC , where hC is the class number of the curve.
From this and (1) we immediately get

lim
s→0

s ζC(s) =
hC

(q − 1) log(q)
.

(3) (Riemann Hypothesis) All roots of P (z) have |α| = √q (hard except for elliptic curves).

In general, if X is a smooth projective variety of dim d

ζX(s) =
P1(q−s)P3(q−s) · · ·P2d−1(q−s)

P0(q−s)P2(q−s) · · ·P2d(q−s)
.

Pi(z) has roots of |α| = √qi. (HARD)

Say E/Fq is an elliptic curve. Then a = #E(Fq)− q − 1.

ζE(s) =
1− a−sq + q1−2s

(1− q−s)(1− q1−s)

We’ll show |a| < 2
√
q. P (z) = 1− az + qz2, a2 − 2q < 0 so P has complex roots. So same |α| = |β| = √q.
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