Math 40520 Theory of Number Homework 1

Due Wednesday, 2015-09-09, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5 .

1. Find all rational numbers x and y satisfying the equation $x^{2}+y^{2}=5$. [Hint: Use the change of variables $u=x-2 y$ and $v=y-2 x$ and find an equation relating u and v.]
2. Find all rational numbers x and y satisfying the equation $x^{2}+2 x y+3 y^{2}=2$. [Hint: Use the change of variables $u=x+y$ and $v=y$ and find an equation relating u and v. Then mimick how we found all Pythagorean triples.]
3. Consider the diophantine equation

$$
3 x+5 y+7 z=2
$$

(a) Find a solution with $x, y, z \in \mathbb{Z}$. [Hint: Use the Euclidean algorithm from class.]
(b) Show that if $3 X+5 Y+7 Z=0$ for some integers X, Y, Z then 3 must divide $Z-Y$.
(c) Find all integral solutions to the equation.
4. Consider the diophantine equation

$$
x y=z t
$$

with $x, y, z, t \in \mathbb{Z}$. Show that there exist integers a, b, c, d such that $x=a b, y=c d, z=a c, t=b d$. [Hint: Factor x, y, z, t into primes.]
5. Show that all the solutions to the diophantine equation

$$
x^{2}+y^{2}=z^{2}+t^{2}
$$

are of the form

$$
\begin{array}{ll}
x=\frac{m n+p q}{2} & y=\frac{m p-n q}{2} \\
z=\frac{m p+n q}{2} & t=\frac{m n-p q}{2}
\end{array}
$$

for integers m, n, p, q such that the above formulae yield integers. [Hint: Use the previous exercise.]
6. In this exercise you will solve the equation

$$
x^{2}+y^{2}+z^{2}=1
$$

with $x, y, z \in \mathbb{Q}$.
(a) Let (a, b) be the point of intersection of the $(x y)$-plane with the line through (x, y, z) and $(0,0,1)$. Show that

$$
\frac{x}{a}=\frac{y}{b}=1-z
$$

(b) Show, mimicking the procedure from the Pythagorean triples case, that every rational solution of the diophantine equation is of the form

$$
x=\frac{2 a}{1+a^{2}+b^{2}} \quad y=\frac{2 b}{1+a^{2}+b^{2}} \quad z=\frac{a^{2}+b^{2}-1}{1+a^{2}+b^{2}}
$$

for rationals a, b.
7. Suppose two of the integers $a_{1}, a_{2}, \ldots, a_{n}$ are coprime. Suppose $x_{1}=u_{1}, \ldots, x_{n}=u_{n}$ is an integral solution to the diophantine equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

Find all the other solutions. [Hint: Cf. exercise 3.]

