
Math 40520 Theory of Number

Homework 1

Due Wednesday, 2015-09-09, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5.

1. Find all rational numbers x and y satisfying the equation x2 + y2 = 5. [Hint: Use the change of
variables u = x− 2y and v = 2x + y and find an equation relating u and v.]

Proof. Via the change of variables we get u2 + v2 = 5x2 + 5y2 = 25 so (u/5)2 + (v/5)2 = 1. We
already know that the rational solutions to this equation are of the form u/5 = 2t/(t2 + 1) and
v/5 = (t2 − 1)/(t2 + 1) where t ∈ Q or t =∞. Thus

x− 2y = u =
10t

t2 + 1

2x + y = v =
5(t2 − 1)

t2 + 1

Solving the system of equations we get

x =
2(t2 + t− 1)

t2 + 1

y =
t2 − 4t− 1

t2 + 1

2. Find all rational numbers x and y satisfying the equation x2 + 2xy + 3y2 = 2. [Hint: Use the change
of variables u = x + y and v = y and find an equation relating u and v. Then mimick how we found
all Pythagorean triples.]

Proof. Via the change of variables we get u2 + 2v2 = x2 + 2xy + 3y2 = 2 which has (0, 1) as a solution.
If (u, v) 6= (0, 1) is another solution let t be the x-coordinate of the intersection between the x-axis and
the line through the pole (0, 1) and the point (u, v). Exactly as in the case of Pythagorean triples (the
equation x2 + y2 = 1) we get, using similar triangles, that

v = 1− u

t

Substituting we get

2 = u2 + 2v2 = u2 + 2(1− u

t
)2 = u2(1 + 2/t2)− 4u/t + 2

and so
u2(1 + 2/t2) = 4u/t
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Either u = 0 or we can divide by u to get

u =
4t

t2 + 2

The case u = 0 is obtained by t = 0 or t = ∞ and so it’s incorporated in the above formula anyway.
Then we get

v = 1− u/t =
t2 − 2

t2 + 2

and these are all the rational solutions.

Now we solve

x + y =
4t

t2 + 2

y =
t2 − 2

t2 + 2

to get

x =
−t2 + 4t + 2

t2 + 2

y =
t2 − 2

t2 + 2

which yield all rational solutions as t ∈ Q ∪ {∞}.

3. Consider the diophantine equation
3x + 5y + 7z = 2

(a) Find a solution with x, y, z ∈ Z. [Hint: Use the Euclidean algorithm from class.]

(b) Show that if 3X + 5Y + 7Z = 0 for some integers X,Y, Z then 3 must divide Z − Y .

(c) Find all integral solutions to the equation.

Proof. (a) From class we know that 3 · 2 + 5 · (−1) = 1 and so (2,−1, 0) is a solution. Or you could
have used the Euclidean algorithm from the version of Bezout’s formula for 3 integers.

(b) Working modulo 3 we have

3x + 5y + 7z ≡ 0 · x + 1 · y + (−1) · z ≡ y − z (mod 3)

so any integral solution to 3x + 5y + 7z = 0 would have 3 | y − z.

(c) We want to parametrize integral solutions (x, y, z) to 3x+ 5y + 7z = 2. As in class (where we did
3x + 5y = 1) we subtract from this the guessed solution to obtain the equation

3(x− 2) + 5(y + 1) + 7z = 0

and from part (b) we know that y + 1 ≡ z (mod 3). This implies that there must exist an integer
k such that y + 1 = z + 3k. Plugging back into the equation we get

0 = 3(x− 2) + 5(y + 1) + 7z = 3(x− 2) + 5(z + 3k) + 7z = 3(x− 2) + 12z + 15k

and dividing by 3 we get
x− 2 + 4z + 5k = 0

so x = 2− 4z − 5k. Thus all integral solutions are of the form

(x, y, z) = (2− 4z − 5k, z + 3k − 1, z)

as k, z ∈ Z.
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4. Consider the diophantine equation
xy = zt

with x, y, z, t ∈ Z. Show that there exist integers a, b, c, d such that x = ab, y = cd, z = ac, t = bd.
[Hint: Factor x, y, z, t into primes.]

Proof. First solution: If z = 0 then x = 0 or y = 0. Reordering we may assume that x = 0. Then
take a = 0, c = y, b = t and d = 1. Similarly if y = 0 we get the desired expression.

If y, z 6= 0 then we may divide to get
x

z
=

t

y
= q

with rational q. Writing q = b/c in lowest terms (with b and c coprime) we know that

x

z
=

b

c

t

y
=

b

c

and there must exist integers a and d such that x = ab, z = ac, t = db, y = dc as the numerator and
denominator of a fraction are the same multiple of the numerator and denominator written in lowest
terms.

Second solution: First, let’s assume that x, y, z, t are all powers of a fixed prime p. So x = pX ,
y = pY , z = pZ and t = pT . The equation is then pX+Y = pZ+T , i.e., X + Y = Z + T . We seek to
write

x = pX = ab = pA+B

y = pY = cd = pC+D

z = pZ = ac = pA+C

t = pT = bd = pB+D

in other words we seek to solve

A + B = X

C + D = Y

A + C = Z

B + D = T

in the nonnegative integers. Reordering we may assume that X ≤ Z in which case the equation
X + Y = Z + T implies Y T . Take B = 0. Then immediately A = X and D = T and so C = Y − T .
All of these are nonnegative solutions as desired.

Now for the general case. For an integer n and a prime p write np for the power of p that shows
up in the factorization of n into primes. As prime factorization is unique if xy = zt we deduce that
xpyp = zptp and so the first case above implies that xp = apbp, yp = cpdp, z = apcp and t = bpdp. Then
take a =

∏
ap, b =

∏
bp, c =

∏
cp, and d =

∏
dp to get the desired expression.

Third solution: Take a = (x, z) and d = (y, t). Then x = ab and z = ac for coprime integers b and c.
We get xy = aby = zt = act so by = ct. As b and c are coprime we deduce that b | t and c | y. Writing
y = cd for an integer d we immediately get t = bd.

5. Show that all the solutions to the diophantine equation

x2 + y2 = z2 + t2
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are of the form

x =
mn + pq

2
y =

mp− nq

2

z =
mp + nq

2
t =

mn− pq

2

for integers m,n, p, q such that the above formulae yield integers. [Hint: Use the previous exercise.]

Proof. Rewrite the equation as x2 − t2 = z2 − y2 which is equivalent to

(x + t)(x− t) = (y + z)(z − y)

From the previous exercise there exist integers m,n, p, q such that

x + t = mn

x− t = pq

y + z = mp

z − y = nq

Solving the system yields the desired expressions.

6. In this exercise you will solve the equation

x2 + y2 + z2 = 1

with x, y, z ∈ Q.

(a) Suppose (x, y, z) 6= (0, 0, 1) is a solution. Let (a, b) be the point of intersection of the (xy)-plane
with the line through (x, y, z) and (0, 0, 1). Show that

x

a
=

y

b
= 1− z

(b) Show, mimicking the procedure from the Pythagorean triples case, that every rational solution of
the diophantine equation (other than (0, 0, 1)) is of the form

x =
2a

1 + a2 + b2
y =

2b

1 + a2 + b2
z =

a2 + b2 − 1

1 + a2 + b2

for rationals a, b.

Proof. (a) Projecting to the (xz)-plane, i.e., with y = 0, we get similar right triangle with legs 1− z,
x and 1, a. Thus 1− z = x/a. Similarly we get the other equation.

(b) Note that x/a = y/b and so y = bx/a. We have

1 = x2 + y2 + z2 = x2 + b2x2/a2 + (1− x/a)2

and so
x2(1 + b2/a2 + 1/a2) = 2x/a

Either x = 0 or x = 2a
a2+b2+1 and the former case is a special example of the latter. Now compute

y = bx/a =
2b

a2 + b2 + 1

and

z = 1− x/a =
a2 + b2 − 1

a2 + b2 + 1
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7. Suppose two of the integers a1, a2, . . . , an are coprime. Suppose x1 = u1, . . . , xn = un is an integral
solution to the diophantine equation

a1x1 + · · ·+ anxn = b

Find all the other solutions. [Hint: Cf. exercise 3.]

Proof. As in Exercise 3 we can rewrite the equation as∑
aixi = d =

∑
aiui

or equivalently ∑
ai(xi − ui) = 0

Suppose for simplicity that a1 and a2 are coprime (otherwise simply reorder the indices). Then a2 is
invertible modulo a1 and there exists b ∈ Z such that a2b ≡ 1 (mod a1). If x1, . . . , xn is a solution
then reducing modulo a1 we get

n∑
i=2

ai(xi − ui) ≡ 0 (mod a1)

and multiplying with b we get

x2 − u2 =≡ −
n∑

i=3

bai(xi − ui) (mod a1)

Thus we may write

x2 − u2 = a1k −
n∑

i=3

bai(xi − ui)

for some integer k. Plugging it back into the equation we get

a1(x1 − u1) + a2(a1k −
n∑

i=3

bai(xi − ui)) +

n∑
i=3

ai(xi − ui) = 0

and so

x1 − u1 = −a2k +

n∑
i=3

ba2 − 1

a1
ai(xi − ui)

where all coefficients are now integers as ba2 ≡ 1 (mod a1). Thus every solution is of the form
(x1, . . . , xn) where

x1 = u1 − a2k +

n∑
i=3

ba2 − 1

a1
ai(xi − ui)

x2 = u2 + a1k −
n∑

i=3

bai(xi − ui)

for k, x3, . . . , xn ∈ Z.
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