Math 40520 Theory of Number Homework 1

Due Wednesday, 2015-09-09, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5 .

1. Find all rational numbers x and y satisfying the equation $x^{2}+y^{2}=5$. [Hint: Use the change of variables $u=x-2 y$ and $v=2 x+y$ and find an equation relating u and v.]

Proof. Via the change of variables we get $u^{2}+v^{2}=5 x^{2}+5 y^{2}=25$ so $(u / 5)^{2}+(v / 5)^{2}=1$. We already know that the rational solutions to this equation are of the form $u / 5=2 t /\left(t^{2}+1\right)$ and $v / 5=\left(t^{2}-1\right) /\left(t^{2}+1\right)$ where $t \in \mathbb{Q}$ or $t=\infty$. Thus

$$
\begin{aligned}
& x-2 y=u=\frac{10 t}{t^{2}+1} \\
& 2 x+y=v=\frac{5\left(t^{2}-1\right)}{t^{2}+1}
\end{aligned}
$$

Solving the system of equations we get

$$
\begin{aligned}
& x=\frac{2\left(t^{2}+t-1\right)}{t^{2}+1} \\
& y=\frac{t^{2}-4 t-1}{t^{2}+1}
\end{aligned}
$$

2. Find all rational numbers x and y satisfying the equation $x^{2}+2 x y+3 y^{2}=2$. [Hint: Use the change of variables $u=x+y$ and $v=y$ and find an equation relating u and v. Then mimick how we found all Pythagorean triples.]

Proof. Via the change of variables we get $u^{2}+2 v^{2}=x^{2}+2 x y+3 y^{2}=2$ which has $(0,1)$ as a solution. If $(u, v) \neq(0,1)$ is another solution let t be the x-coordinate of the intersection between the x-axis and the line through the pole $(0,1)$ and the point (u, v). Exactly as in the case of Pythagorean triples (the equation $x^{2}+y^{2}=1$) we get, using similar triangles, that

$$
v=1-\frac{u}{t}
$$

Substituting we get

$$
2=u^{2}+2 v^{2}=u^{2}+2\left(1-\frac{u}{t}\right)^{2}=u^{2}\left(1+2 / t^{2}\right)-4 u / t+2
$$

and so

$$
u^{2}\left(1+2 / t^{2}\right)=4 u / t
$$

Either $u=0$ or we can divide by u to get

$$
u=\frac{4 t}{t^{2}+2}
$$

The case $u=0$ is obtained by $t=0$ or $t=\infty$ and so it's incorporated in the above formula anyway. Then we get

$$
v=1-u / t=\frac{t^{2}-2}{t^{2}+2}
$$

and these are all the rational solutions.
Now we solve

$$
\begin{aligned}
x+y & =\frac{4 t}{t^{2}+2} \\
y & =\frac{t^{2}-2}{t^{2}+2}
\end{aligned}
$$

to get

$$
\begin{aligned}
& x=\frac{-t^{2}+4 t+2}{t^{2}+2} \\
& y=\frac{t^{2}-2}{t^{2}+2}
\end{aligned}
$$

which yield all rational solutions as $t \in \mathbb{Q} \cup\{\infty\}$.
3. Consider the diophantine equation

$$
3 x+5 y+7 z=2
$$

(a) Find a solution with $x, y, z \in \mathbb{Z}$. [Hint: Use the Euclidean algorithm from class.]
(b) Show that if $3 X+5 Y+7 Z=0$ for some integers X, Y, Z then 3 must divide $Z-Y$.
(c) Find all integral solutions to the equation.

Proof. (a) From class we know that $3 \cdot 2+5 \cdot(-1)=1$ and so $(2,-1,0)$ is a solution. Or you could have used the Euclidean algorithm from the version of Bezout's formula for 3 integers.
(b) Working modulo 3 we have

$$
3 x+5 y+7 z \equiv 0 \cdot x+1 \cdot y+(-1) \cdot z \equiv y-z \quad(\bmod 3)
$$

so any integral solution to $3 x+5 y+7 z=0$ would have $3 \mid y-z$.
(c) We want to parametrize integral solutions (x, y, z) to $3 x+5 y+7 z=2$. As in class (where we did $3 x+5 y=1$) we subtract from this the guessed solution to obtain the equation

$$
3(x-2)+5(y+1)+7 z=0
$$

and from part (b) we know that $y+1 \equiv z(\bmod 3)$. This implies that there must exist an integer k such that $y+1=z+3 k$. Plugging back into the equation we get

$$
0=3(x-2)+5(y+1)+7 z=3(x-2)+5(z+3 k)+7 z=3(x-2)+12 z+15 k
$$

and dividing by 3 we get

$$
x-2+4 z+5 k=0
$$

so $x=2-4 z-5 k$. Thus all integral solutions are of the form

$$
(x, y, z)=(2-4 z-5 k, z+3 k-1, z)
$$

as $k, z \in \mathbb{Z}$.
4. Consider the diophantine equation

$$
x y=z t
$$

with $x, y, z, t \in \mathbb{Z}$. Show that there exist integers a, b, c, d such that $x=a b, y=c d, z=a c, t=b d$. [Hint: Factor x, y, z, t into primes.]

Proof. First solution: If $z=0$ then $x=0$ or $y=0$. Reordering we may assume that $x=0$. Then take $a=0, c=y, b=t$ and $d=1$. Similarly if $y=0$ we get the desired expression.

If $y, z \neq 0$ then we may divide to get

$$
\frac{x}{z}=\frac{t}{y}=q
$$

with rational q. Writing $q=b / c$ in lowest terms (with b and c coprime) we know that

$$
\frac{x}{z}=\frac{b}{c} \quad \frac{t}{y}=\frac{b}{c}
$$

and there must exist integers a and d such that $x=a b, z=a c, t=d b, y=d c$ as the numerator and denominator of a fraction are the same multiple of the numerator and denominator written in lowest terms.
Second solution: First, let's assume that x, y, z, t are all powers of a fixed prime p. So $x=p^{X}$, $y=p^{Y}, z=p^{Z}$ and $t=p^{T}$. The equation is then $p^{X+Y}=p^{Z+T}$, i.e., $X+Y=Z+T$. We seek to write

$$
\begin{aligned}
& x=p^{X}=a b=p^{A+B} \\
& y=p^{Y}=c d=p^{C+D} \\
& z=p^{Z}=a c=p^{A+C} \\
& t=p^{T}=b d=p^{B+D}
\end{aligned}
$$

in other words we seek to solve

$$
\begin{aligned}
& A+B=X \\
& C+D=Y \\
& A+C=Z \\
& B+D=T
\end{aligned}
$$

in the nonnegative integers. Reordering we may assume that $X \leq Z$ in which case the equation $X+Y=Z+T$ implies $Y T$. Take $B=0$. Then immediately $A=X$ and $D=T$ and so $C=Y-T$. All of these are nonnegative solutions as desired.
Now for the general case. For an integer n and a prime p write n_{p} for the power of p that shows up in the factorization of n into primes. As prime factorization is unique if $x y=z t$ we deduce that $x_{p} y_{p}=z_{p} t_{p}$ and so the first case above implies that $x_{p}=a_{p} b_{p}, y_{p}=c_{p} d_{p}, z=a_{p} c_{p}$ and $t=b_{p} d_{p}$. Then take $a=\prod a_{p}, b=\prod b_{p}, c=\prod c_{p}$, and $d=\prod d_{p}$ to get the desired expression.
Third solution: Take $a=(x, z)$ and $d=(y, t)$. Then $x=a b$ and $z=a c$ for coprime integers b and c. We get $x y=a b y=z t=a c t$ so $b y=c t$. As b and c are coprime we deduce that $b \mid t$ and $c \mid y$. Writing $y=c d$ for an integer d we immediately get $t=b d$.
5. Show that all the solutions to the diophantine equation

$$
x^{2}+y^{2}=z^{2}+t^{2}
$$

are of the form

$$
\begin{array}{ll}
x=\frac{m n+p q}{2} & y=\frac{m p-n q}{2} \\
z=\frac{m p+n q}{2} & t=\frac{m n-p q}{2}
\end{array}
$$

for integers m, n, p, q such that the above formulae yield integers. [Hint: Use the previous exercise.]
Proof. Rewrite the equation as $x^{2}-t^{2}=z^{2}-y^{2}$ which is equivalent to

$$
(x+t)(x-t)=(y+z)(z-y)
$$

From the previous exercise there exist integers m, n, p, q such that

$$
\begin{aligned}
& x+t=m n \\
& x-t=p q \\
& y+z=m p \\
& z-y=n q
\end{aligned}
$$

Solving the system yields the desired expressions.
6. In this exercise you will solve the equation

$$
x^{2}+y^{2}+z^{2}=1
$$

with $x, y, z \in \mathbb{Q}$.
(a) Suppose $(x, y, z) \neq(0,0,1)$ is a solution. Let (a, b) be the point of intersection of the ($x y$)-plane with the line through (x, y, z) and $(0,0,1)$. Show that

$$
\frac{x}{a}=\frac{y}{b}=1-z
$$

(b) Show, mimicking the procedure from the Pythagorean triples case, that every rational solution of the diophantine equation (other than $(0,0,1)$) is of the form

$$
x=\frac{2 a}{1+a^{2}+b^{2}} \quad y=\frac{2 b}{1+a^{2}+b^{2}} \quad z=\frac{a^{2}+b^{2}-1}{1+a^{2}+b^{2}}
$$

for rationals a, b.
Proof. (a) Projecting to the $(x z)$-plane, i.e., with $y=0$, we get similar right triangle with legs $1-z$, x and $1, a$. Thus $1-z=x / a$. Similarly we get the other equation.
(b) Note that $x / a=y / b$ and so $y=b x / a$. We have

$$
1=x^{2}+y^{2}+z^{2}=x^{2}+b^{2} x^{2} / a^{2}+(1-x / a)^{2}
$$

and so

$$
x^{2}\left(1+b^{2} / a^{2}+1 / a^{2}\right)=2 x / a
$$

Either $x=0$ or $x=\frac{2 a}{a^{2}+b^{2}+1}$ and the former case is a special example of the latter. Now compute

$$
y=b x / a=\frac{2 b}{a^{2}+b^{2}+1}
$$

and

$$
z=1-x / a=\frac{a^{2}+b^{2}-1}{a^{2}+b^{2}+1}
$$

7. Suppose two of the integers $a_{1}, a_{2}, \ldots, a_{n}$ are coprime. Suppose $x_{1}=u_{1}, \ldots, x_{n}=u_{n}$ is an integral solution to the diophantine equation

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=b
$$

Find all the other solutions. [Hint: Cf. exercise 3.]
Proof. As in Exercise 3 we can rewrite the equation as

$$
\sum a_{i} x_{i}=d=\sum a_{i} u_{i}
$$

or equivalently

$$
\sum a_{i}\left(x_{i}-u_{i}\right)=0
$$

Suppose for simplicity that a_{1} and a_{2} are coprime (otherwise simply reorder the indices). Then a_{2} is invertible modulo a_{1} and there exists $b \in \mathbb{Z}$ such that $a_{2} b \equiv 1\left(\bmod a_{1}\right)$. If x_{1}, \ldots, x_{n} is a solution then reducing modulo a_{1} we get

$$
\sum_{i=2}^{n} a_{i}\left(x_{i}-u_{i}\right) \equiv 0 \quad\left(\bmod a_{1}\right)
$$

and multiplying with b we get

$$
x_{2}-u_{2}=\equiv-\sum_{i=3}^{n} b a_{i}\left(x_{i}-u_{i}\right) \quad\left(\bmod a_{1}\right)
$$

Thus we may write

$$
x_{2}-u_{2}=a_{1} k-\sum_{i=3}^{n} b a_{i}\left(x_{i}-u_{i}\right)
$$

for some integer k. Plugging it back into the equation we get

$$
a_{1}\left(x_{1}-u_{1}\right)+a_{2}\left(a_{1} k-\sum_{i=3}^{n} b a_{i}\left(x_{i}-u_{i}\right)\right)+\sum_{i=3}^{n} a_{i}\left(x_{i}-u_{i}\right)=0
$$

and so

$$
x_{1}-u_{1}=-a_{2} k+\sum_{i=3}^{n} \frac{b a_{2}-1}{a_{1}} a_{i}\left(x_{i}-u_{i}\right)
$$

where all coefficients are now integers as $b a_{2} \equiv 1\left(\bmod a_{1}\right)$. Thus every solution is of the form $\left(x_{1}, \ldots, x_{n}\right)$ where

$$
\begin{gathered}
x_{1}=u_{1}-a_{2} k+\sum_{i=3}^{n} \frac{b a_{2}-1}{a_{1}} a_{i}\left(x_{i}-u_{i}\right) \\
x_{2}=u_{2}+a_{1} k-\sum_{i=3}^{n} b a_{i}\left(x_{i}-u_{i}\right)
\end{gathered}
$$

for $k, x_{3}, \ldots, x_{n} \in \mathbb{Z}$.

