Math 40520 Theory of Number
Homework 1

Due Wednesday, 2015-09-09, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5.

1. Find all rational numbers z and y satisfying the equation 22 + y?> = 5. [Hint: Use the change of
variables u =  — 2y and v = 2z + y and find an equation relating u and v.]

Proof. Via the change of variables we get u? + v? = 5z% 4+ 5y* = 25 so (u/5)? + (v/5)? = 1. We
already know that the rational solutions to this equation are of the form w/5 = 2t/(t* + 1) and
v/5=(t>—1)/(t> + 1) where t € Q or t = co. Thus

Solving the system of equations we get

O

2. Find all rational numbers z and y satisfying the equation z2 + 2zy + 3y? = 2. [Hint: Use the change
of variables © = z + y and v = y and find an equation relating v and v. Then mimick how we found
all Pythagorean triples.]

Proof. Via the change of variables we get u? + 2v? = 22 + 22y + 3y? = 2 which has (0, 1) as a solution.
If (u,v) # (0,1) is another solution let ¢ be the z-coordinate of the intersection between the x-axis and
the line through the pole (0,1) and the point (u,v). Exactly as in the case of Pythagorean triples (the
equation 22 + y? = 1) we get, using similar triangles, that

u

v=1——
t

Substituting we get
2= u?+ 2% =u? +2(1 - %)2 = (1 +2/t2) — duft + 2

and so
u?(1+2/t%) = 4u/t



Either u = 0 or we can divide by u to get
4t
=5y
The case u = 0 is obtained by ¢t = 0 or t = oo and so it’s incorporated in the above formula anyway.
Then we get

t?—2
v=1—u/t= 212
and these are all the rational solutions.
Now we solve
4t
THY=
=2
YTt
to get
P 442
1242
t?2 -2
YT e
which yield all rational solutions as t € Q U {oo}. O

. Consider the diophantine equation
3x+0y+T7z=2

(a) Find a solution with z,y, z € Z. [Hint: Use the Euclidean algorithm from class.]
(b) Show that if 3X + 5Y + 7Z = 0 for some integers X,Y, Z then 3 must divide Z — Y.

(c) Find all integral solutions to the equation.

Proof. (a) From class we know that 3-2+5-(—1) =1 and so (2,—1,0) is a solution. Or you could
have used the Euclidean algorithm from the version of Bezout’s formula for 3 integers.

(b) Working modulo 3 we have
3x+5y+7z=0-z+1-y+(-1)-z2=y—2z (mod 3)
so any integral solution to 3z 4+ 5y + 7z = 0 would have 3 | y — 2.

(¢c) We want to parametrize integral solutions (z,y, z) to 3z + 5y + 7z = 2. As in class (where we did
3z 4+ 5y = 1) we subtract from this the guessed solution to obtain the equation

3x—2)+5(y+1)+72=0

and from part (b) we know that y 4+ 1 = z (mod 3). This implies that there must exist an integer
k such that y + 1 = z + 3k. Plugging back into the equation we get

0=3(z—-2)+5(y+1)+72=3(x—2)+5(2+3k)+ 7z =3(x — 2) + 12z + 15k

and dividing by 3 we get
x—24424+5k=0

so x = 2 — 4z — 5k. Thus all integral solutions are of the form
(z,y,2) =(2—4z — bk, z+ 3k — 1, 2)

as k,z € Z.



4. Consider the diophantine equation
xy = 2t
with z,y, z,t € Z. Show that there exist integers a,b, c,d such that x = ab, y = cd, z = ac, t = bd.
[Hint: Factor x,y, z, ¢ into primes.]

Proof. First solution: If z = 0 then x = 0 or y = 0. Reordering we may assume that £ = 0. Then
take a =0, c=1y, b =1t and d = 1. Similarly if y = 0 we get the desired expression.

If y, z # 0 then we may divide to get

and there must exist integers a and d such that x = ab, z = ac, t = db, y = dc as the numerator and
denominator of a fraction are the same multiple of the numerator and denominator written in lowest
terms.

Second solution: First, let’s assume that x,v, z,t are all powers of a fixed prime p. So z = p¥,
y=1pY, z=p% and t = p”. The equation is then pX™¥ = p?*T ie, X +Y = Z +T. We seek to
write

y=p" =cd=p“t"
2= p? = ac = pAtC
t=p" =bd=pPtP
in other words we seek to solve
A+B=X
C+D=Y
A+C =7
B+D=T

in the nonnegative integers. Reordering we may assume that X < Z in which case the equation
X+Y =27Z+4T implies YT. Take B = 0. Then immediately A =X and D =T andso C =Y —T.
All of these are nonnegative solutions as desired.

Now for the general case. For an integer n and a prime p write n, for the power of p that shows
up in the factorization of n into primes. As prime factorization is unique if zy = 2zt we deduce that
ZTpYp = Zptp and so the first case above implies that =, = a,b,, yp, = cpdyp, 2 = apc, and ¢t = bpdy,. Then
take a = [[ ap, b=[]bp, c=[]¢p, and d =[] d,, to get the desired expression.

Third solution: Take a = (z,2) and d = (y,t). Then z = ab and z = ac for coprime integers b and c.
We get zy = aby = zt = act so by = ct. As b and ¢ are coprime we deduce that b | ¢ and ¢ | y. Writing
y = cd for an integer d we immediately get ¢ = bd. O

5. Show that all the solutions to the diophantine equation

$2+y2222+t2



are of the form

mn + pq _ mp—ng
2 2

z:mp—i—nq t:mn—pq
2 2

for integers m, n, p, g such that the above formulae yield integers. [Hint: Use the previous exercise.]

Proof. Rewrite the equation as x? — 2 = 22 — 32 which is equivalent to
(z+8)(z—1)=(y+2)(z—y)
From the previous exercise there exist integers m, n, p, ¢ such that

r+t=mn

T —1t=pq
y+z=mp
zZ—Yy=nq
Solving the system yields the desired expressions. O

. In this exercise you will solve the equation
P4y =1
with z,y, 2z € Q.
(a) Suppose (z,y,z) # (0,0,1) is a solution. Let (a,b) be the point of intersection of the (xy)-plane

with the line through (z,y, z) and (0,0,1). Show that
Ty
T_d 1
a b :

(b) Show, mimicking the procedure from the Pythagorean triples case, that every rational solution of
the diophantine equation (other than (0,0,1)) is of the form

2a 2b a’?+b2 -1
r=—"—>
14+ a2 +b2 Y

T 142+ Titar o
for rationals a, b.

Proof. (a) Projecting to the (xz)-plane, i.e., with y = 0, we get similar right triangle with legs 1 — z,
z and 1, a. Thus 1 — z = z/a. Similarly we get the other equation.

(b) Note that x/a = y/b and so y = bx/a. We have

=2 +y* +22 =22 +b%2%/a® + (1 — x/a)?

and so
22(1+0%/a® + 1/a?) = 2z/a

Either x =0 or z = % and the former case is a special example of the latter. Now compute
2b
== ——
y=br/a a2 +b%+1
and ) )
a®+b°—1
=1— -
z z/a Zr 1



7. Suppose two of the integers ai,as,...,a, are coprime. Suppose 1 = U1,...,T, = Uy, iS an integral
solution to the diophantine equation

a1y + -+ anT, =b
Find all the other solutions. [Hint: Cf. exercise 3.]

Proof. As in Exercise 3 we can rewrite the equation as

Zaixi =d= Zaiui
Zai(xi - Ui) =0

Suppose for simplicity that a; and as are coprime (otherwise simply reorder the indices). Then as is
invertible modulo a; and there exists b € Z such that asb = 1 (mod aq). If x1,...,x, is a solution
then reducing modulo a; we get

or equivalently

n

Zai(zi —u;) =0 (mod aq)

=2

and multiplying with b we get
T2 — U == — Z bal(zz — Ui) (HlOd al)
i=3

Thus we may write

o — U2 = alk — Zbal(azl — ’U,l)

=3

for some integer k. Plugging it back into the equation we get

a1(x1 —u1) + as(ark — Zbai(xi —u;)) + Zai(xi —u;) =0

i=3 i=3
and so .
k + Z ba2 -1 ( )
T1— Ul = —a a:(z: —u,
1 1 2 : a i\ Lg i
=3
where all coefficients are now integers as bas = 1 (mod a;). Thus every solution is of the form
(1, ...,2zyn) where
n
bay — 1
1 =up — agk + 2~ a(zi — u;)
: al
=3
n
T2 = U —+ alk — Zbal(xz — ul)
i=3
for k,x3,...,x, € Z. O



