Math 40520 Theory of Number Homework 2

Due Wednesday, 2015-09-16, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5 .

1. Consider the polynomials $P(X)=X^{7}+6 X^{6}+3 X^{5}+X^{4}+5 X^{3}+3 X^{2}+5 X+4$ and $Q(X)=$ $X^{5}+4 X^{4}+4 X^{2}+X+1$ with coefficients in \mathbb{Z}_{7} (modulo 7). Use the Euclidean algorithm to:
(a) Determine (P, Q). (Recall our convention that the gcd of two polynomials is the monic polynomial of highest degree dividing both of them.)
(b) Find two polynomials $U(X)$ and $V(X)$ with coefficients in \mathbb{Z}_{7} such that $P U+Q V=(P, Q)$.
2. Show that the equation

$$
x^{2}+y^{2}+z^{2}=20152015
$$

has no integral solutions. [Hint: Try congruences modulo powers of 2.]
3. Show that the equation

$$
x^{216}-y^{216}+z^{216}-t^{216}=5
$$

has no integral solutions. [Hint: Use the Euler theorem modulo 9.]
4. Consider the diophantine equation

$$
2 x^{2}+7 y^{2}=1
$$

(a) Show that it has no integral solutions but that it has $(1 / 3,1 / 3)$ as a rational solution.
(b) Suppose $n \geq 2$ is an integer not divisible by 3 . Show that there exist integers x, y such that

$$
2 x^{2}+7 y^{2} \equiv 1 \quad(\bmod n)
$$

[Hint: Use the rational solution from above.]
5. This is Exercise 4.3 on page 71. Let p be a prime and consider the rational number

$$
\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}
$$

If $p>2$ show that $p \mid m$. [Hint: consider the function $f: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p}^{\times}$defined by $f(x)=x^{-1}$.]
6. Exercise 4.21 on page 82 .
7. Exercise 6.22 on page 118 .

