Math 40520 Theory of Number
Homework 2

Due Wednesday, 2015-09-16, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5.

1.

Consider the polynomials P(X) = X7 + 6X6 + 3X® + X* + 5X3 + 3X2 + 5X + 4 and Q(X) =
X5 4+4X* +4X? + X + 1 with coefficients in Z7 (modulo 7). Use the Euclidean algorithm to:

(a) Determine (P, Q). (Recall our convention that the ged of two polynomials is the monic polynomial
of highest degree dividing both of them.)

(b) Find two polynomials U(X) and V(X)) with coefficients in Z7 such that PU + QV = (P, Q).

Proof. We apply division with remainder as follows: R_1 = P, Ry = Q, R,-1 = R,Qny1 + Riuq1 with
deg R,,+1 < deg R,,. We collect the results in the tabel:

P=Q(X?+2X +2)+ (3X*+3X3+6X*+ X +2)
Q=0BX"+3X>+6X*+X +2)(5X +1)+ (2X* +4X +6)

3XP 43X +6X2+ X +2=(2X3 +4X +6)(5X +5)+0

Recall that R,, = PU,, + QV,, where

Un-',—l = Un—l - Qn+1Un
VnJrl = anl - QnJern

where U,1 = 1, V,1 = O, UO = 0, Vb =1.

n Rn Qn Un Vn

-1 P - 1 0

0 @Q - 0 1

1 3X*+3X3+6X2+X+2 X?2+2X+2 1 —(X?+2X +2)

2 2X3+44X+6 5X +1 2X +6 5X34+4X%45X+3

and so

By convention
(mod 7) to get

P-Uy+Q Vo=2X>4+4X 146
the ged of two polynomials is monic so we divide by 2 by multiplying with 4

(a) (P,Q)=X3+2X +3 and
(b) P- (X +3)+Q (6X3+2X2+6X +5)=(P,Q).
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2. Show that the equation
z? +y? + 2% = 20152015

has no integral solutions. [Hint: Try congruences modulo powers of 2.]

Proof. Modulo 2 or 4 as in class we get nowhere because 22 = 0,1 (mod 4) and x? + 3> + 22 could
take any residue mod 4. Modulo 8 though 22 = 0,1,4 (mod 8) and so 2% + 4% + 22 = 0,1,2,3,4,5,6
(mod 8) whereas 20152015 = 7 (mod 8). O

3. Show that the equation
g216 _ 216 4 ;216 4216 _ 5

has no integral solutions. [Hint: Use the Euler theorem modulo 9.]

Proof. From Euler we know that if = is coprime to 9 then 2% = 1 (mod 9) and so 22! =1 (mod 9).
If z is divisible by 3 then clearly x21® = 0 (mod 9) as 3216 | 2216, Thus 226 + 226 =0,1,2 (mod 9).
Therefore

a0 — 210 4 2216 216 mod 9 € {a+b mod 9a,b € {0,1,2}} = {0,1,2,7,8}
and 5 mod 9 is not in this set. O

4. Consider the diophantine equation
22% + 7yt =1
(a) Show that it has no integral solutions but that it has (1/3,1/3) as a rational solution.
(b) Suppose n > 2 is an integer not divisible by 3. Show that there exist integers x,y such that

22 +7y* =1 (mod n)
[Hint: Use the rational solution from above.]

Proof. (a) Suppose z or y is nonzero but integral. Then z% y? > 1 and so 22?2 + 7Ty > 2 so the
equation has no integral solutions. It is clear that (1/3,1/3) is a rational solution as 2+ 7 = 9.

n 1s not divisible by 3 then 3 is invertible mod n and so we could use the rational solution to
b) If n i divisible by 3 then 3 is i ibl d d 1d h ional soluti
produce a solution mod n. Suppose k = 37! (mod n). Then let’s try x = k,y = k.
22% 4+ 7y® = 9k°
= (3k)?
=12=1 (mod n)

5. This is Exercise 4.3 on page 71. Let p be a prime and consider the rational number

LI S
n o 2 3 p—1

If p > 2 show that p | m. [Hint: consider the function f :Z) — Z,; defined by f(z) = x L



Proof. It’s enough to do this when m and n are coprime, i.e., if m/n is written in lowest terms. Clearing
denominators the RHS has the denominator (p — 1)! before simplification and so n | (p — 1)! which
implies that n is invertible (mod p). Thus we need to show that

p—1
= E7'=0 (mod p)
1

m
n

el
Il

and now each k! can be taken modulo p separately and we need to show that

Z (k' modp)=0 (mod p)
keZy

Recall that in proving Fermat’s little Theorem the idea was that {ax|z € Z; } = {z|r € Z;} if pfa as
multiplication by a is bijective and therefore a permutation of Z,; . Then the product of all the elements
of Z,; could be computed as the product of all the elements of either representation of Z,. We employ
the same idea here. The function f(x) = 2~ is now bijective (it’s surjective because (z=1)~! = z and
since it’s surjective on a finite set it’s also bijective; alternatively if x=! = y~! then immediately by
inversion z = y so the function is also injective) and therefore

{a7 o eZ)} ={alz e Z)}

Taking the sum of all the elements in two ways we deduce that

Z(k‘l mod p) = Z k:wzo (mod p)

keZy kEZy
as p is odd and so (p — 1)/2 is an integer. O
. Exercise 4.21 on page 82.

Proof. Note that p > 3. Then Wilson gives modulo p the equalities

-1=(p-1)!
=@-9-3)p-2)F-1
= (-1)(-2)- (-3) - (p— )
=—6(p—4)! (mod p)
as p— k = —k (mod p). Finally we deduce 6(p —4)! =1 (mod p). O
. Exercise 6.22 on page 118.
Proof. For the first part note that p —1 = —1 (mod p) and so (p — 1)! = —(p — 2)! (mod p) which,

using Wilson, yields (p — 2)! =1 (mod p).
For the second part we’d get
“1=@-D'=@-3)!(p-2)(p—-1) =2(p—3)! (modp)

so (p—3)! = —271 (mod p). But if p is odd then (p—1)/2 is an integer and 2- (p—1)/2=p—1= -1
(mod p) and so =271 = (p — 1)/2 (mod p). This implies the desired congruence. O



