Math 40520 Theory of Number Homework 2

Due Wednesday, 2015-09-16, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5 .

1. Consider the polynomials $P(X)=X^{7}+6 X^{6}+3 X^{5}+X^{4}+5 X^{3}+3 X^{2}+5 X+4$ and $Q(X)=$ $X^{5}+4 X^{4}+4 X^{2}+X+1$ with coefficients in \mathbb{Z}_{7} (modulo 7). Use the Euclidean algorithm to:
(a) Determine (P, Q). (Recall our convention that the gcd of two polynomials is the monic polynomial of highest degree dividing both of them.)
(b) Find two polynomials $U(X)$ and $V(X)$ with coefficients in \mathbb{Z}_{7} such that $P U+Q V=(P, Q)$.

Proof. We apply division with remainder as follows: $R_{-1}=P, R_{0}=Q, R_{n-1}=R_{n} Q_{n+1}+R_{n+1}$ with $\operatorname{deg} R_{n+1}<\operatorname{deg} R_{n}$. We collect the results in the tabel:

$$
\begin{aligned}
P & =Q\left(X^{2}+2 X+2\right)+\left(3 X^{4}+3 X^{3}+6 X^{2}+X+2\right) \\
Q & =\left(3 X^{4}+3 X^{3}+6 X^{2}+X+2\right)(5 X+1)+\left(2 X^{3}+4 X+6\right) \\
3 X^{4}+3 X^{3}+6 X^{2}+X+2 & =\left(2 X^{3}+4 X+6\right)(5 X+5)+0
\end{aligned}
$$

Recall that $R_{n}=P U_{n}+Q V_{n}$ where

$$
\begin{aligned}
U_{n+1} & =U_{n-1}-Q_{n+1} U_{n} \\
V_{n+1} & =V_{n-1}-Q_{n+1} V_{n}
\end{aligned}
$$

where $U_{-1}=1, V_{-1}=0, U_{0}=0, V_{0}=1$.

n	R_{n}	Q_{n}	U_{n}	V_{n}
-1	P	-	1	0
0	Q	-	0	1
1	$3 X^{4}+3 X^{3}+6 X^{2}+X+2$	$X^{2}+2 X+2$	1	$-\left(X^{2}+2 X+2\right)$
2	$2 X^{3}+4 X+6$	$5 X+1$	$2 X+6$	$5 X^{3}+4 X^{2}+5 X+3$

and so

$$
P \cdot U_{2}+Q \cdot V_{2}=2 X^{3}+4 X+6
$$

By convention the gcd of two polynomials is monic so we divide by 2 by multiplying with $4 \equiv 2^{-1}$ $(\bmod 7)$ to get
(a) $(P, Q)=X^{3}+2 X+3$ and
(b) $P \cdot(X+3)+Q \cdot\left(6 X^{3}+2 X^{2}+6 X+5\right)=(P, Q)$.
2. Show that the equation

$$
x^{2}+y^{2}+z^{2}=20152015
$$

has no integral solutions. [Hint: Try congruences modulo powers of 2.]
Proof. Modulo 2 or 4 as in class we get nowhere because $x^{2} \equiv 0,1(\bmod 4)$ and $x^{2}+y^{2}+z^{2}$ could take any residue $\bmod 4$. Modulo 8 though $x^{2} \equiv 0,1,4(\bmod 8)$ and so $x^{2}+y^{2}+z^{2} \equiv 0,1,2,3,4,5,6$ $(\bmod 8)$ whereas $20152015 \equiv 7(\bmod 8)$.
3. Show that the equation

$$
x^{216}-y^{216}+z^{216}-t^{216}=5
$$

has no integral solutions. [Hint: Use the Euler theorem modulo 9.]
Proof. From Euler we know that if x is coprime to 9 then $x^{6} \equiv 1(\bmod 9)$ and so $x^{216} \equiv 1(\bmod 9)$. If x is divisible by 3 then clearly $x^{216} \equiv 0(\bmod 9)$ as $3^{216} \mid x^{216}$. Thus $x^{216}+z^{216} \equiv 0,1,2(\bmod 9)$. Therefore

$$
x^{216}-y^{216}+z^{216}-t^{216} \quad \bmod 9 \in\{a+b \bmod 9 \mid a, b \in\{0,1,2\}\}=\{0,1,2,7,8\}
$$

and $5 \bmod 9$ is not in this set.
4. Consider the diophantine equation

$$
2 x^{2}+7 y^{2}=1
$$

(a) Show that it has no integral solutions but that it has $(1 / 3,1 / 3)$ as a rational solution.
(b) Suppose $n \geq 2$ is an integer not divisible by 3 . Show that there exist integers x, y such that

$$
2 x^{2}+7 y^{2} \equiv 1 \quad(\bmod n)
$$

[Hint: Use the rational solution from above.]
Proof. (a) Suppose x or y is nonzero but integral. Then $x^{2}, y^{2} \geq 1$ and so $2 x^{2}+7 y^{2} \geq 2$ so the equation has no integral solutions. It is clear that $(1 / 3,1 / 3)$ is a rational solution as $2+7=9$.
(b) If n is not divisible by 3 then 3 is invertible $\bmod n$ and so we could use the rational solution to produce a solution $\bmod n$. Suppose $k \equiv 3^{-1}(\bmod n)$. Then let's try $x=k, y=k$.

$$
\begin{aligned}
2 x^{2}+7 y^{2} & =9 k^{2} \\
& =(3 k)^{2} \\
& \equiv 1^{2} \equiv 1 \quad(\bmod n)
\end{aligned}
$$

5. This is Exercise 4.3 on page 71 . Let p be a prime and consider the rational number

$$
\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}
$$

If $p>2$ show that $p \mid m$. [Hint: consider the function $f: \mathbb{Z}_{p}^{\times} \rightarrow \mathbb{Z}_{p}^{\times}$defined by $f(x)=x^{-1}$.]

Proof. It's enough to do this when m and n are coprime, i.e., if m / n is written in lowest terms. Clearing denominators the RHS has the denominator ($p-1$)! before simplification and so $n \mid(p-1)$! which implies that n is invertible $(\bmod p)$. Thus we need to show that

$$
\frac{m}{n}=\sum_{k=1}^{p-1} k^{-1} \equiv 0 \quad(\bmod p)
$$

and now each k^{-1} can be taken modulo p separately and we need to show that

$$
\sum_{k \in \mathbb{Z}_{p}^{\times}}\left(k^{-1} \quad \bmod p\right) \equiv 0 \quad(\bmod p)
$$

Recall that in proving Fermat's little Theorem the idea was that $\left\{a x \mid x \in \mathbb{Z}_{p}^{\times}\right\}=\left\{x \mid x \in \mathbb{Z}_{p}^{\times}\right\}$if $p \nmid a$ as multiplication by a is bijective and therefore a permutation of \mathbb{Z}_{p}^{\times}. Then the product of all the elements of \mathbb{Z}_{p}^{\times}could be computed as the product of all the elements of either representation of \mathbb{Z}_{p}^{\times}. We employ the same idea here. The function $f(x)=x^{-1}$ is now bijective (it's surjective because $\left(x^{-1}\right)^{-1}=x$ and since it's surjective on a finite set it's also bijective; alternatively if $x^{-1}=y^{-1}$ then immediately by inversion $x=y$ so the function is also injective) and therefore

$$
\left\{x^{-1} \mid x \in \mathbb{Z}_{p}^{\times}\right\}=\left\{x \mid x \in \mathbb{Z}_{p}^{\times}\right\}
$$

Taking the sum of all the elements in two ways we deduce that

$$
\sum_{k \in \mathbb{Z}_{p}^{\times}}\left(k^{-1} \bmod p\right)=\sum_{k \in \mathbb{Z}_{p}^{\times}} k=\frac{(p-1) p}{2} \equiv 0 \quad(\bmod p)
$$

as p is odd and so $(p-1) / 2$ is an integer.
6. Exercise 4.21 on page 82 .

Proof. Note that $p>3$. Then Wilson gives modulo p the equalities

$$
\begin{aligned}
-1 & \equiv(p-1)! \\
& \equiv(p-4)!(p-3)(p-2)(p-1) \\
& \equiv(-1) \cdot(-2) \cdot(-3) \cdot(p-4)! \\
& \equiv-6(p-4)!\quad(\bmod p)
\end{aligned}
$$

as $p-k \equiv-k(\bmod p)$. Finally we deduce $6(p-4)!\equiv 1(\bmod p)$.
7. Exercise 6.22 on page 118 .

Proof. For the first part note that $p-1 \equiv-1(\bmod p)$ and so $(p-1)!\equiv-(p-2)!(\bmod p)$ which, using Wilson, yields $(p-2)!\equiv 1(\bmod p)$.
For the second part we'd get

$$
-1 \equiv(p-1)!\equiv(p-3)!(p-2)(p-1) \equiv 2(p-3)!\quad(\bmod p)
$$

so $(p-3)!\equiv-2^{-1}(\bmod p)$. But if p is odd then $(p-1) / 2$ is an integer and $2 \cdot(p-1) / 2 \equiv p-1 \equiv-1$ $(\bmod p)$ and so $-2^{-1} \equiv(p-1) / 2(\bmod p)$. This implies the desired congruence.

