Math 40520 Theory of Number Homework 2

Due Wednesday, 2015-09-16, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5.

- 1. Consider the polynomials $P(X) = X^7 + 6X^6 + 3X^5 + X^4 + 5X^3 + 3X^2 + 5X + 4$ and $Q(X) = X^5 + 4X^4 + 4X^2 + X + 1$ with coefficients in \mathbb{Z}_7 (modulo 7). Use the Euclidean algorithm to:
 - (a) Determine (P, Q). (Recall our convention that the gcd of two polynomials is the monic polynomial of highest degree dividing both of them.)
 - (b) Find two polynomials U(X) and V(X) with coefficients in \mathbb{Z}_7 such that PU + QV = (P, Q).

Proof. We apply division with remainder as follows: $R_{-1} = P$, $R_0 = Q$, $R_{n-1} = R_n Q_{n+1} + R_{n+1}$ with deg $R_{n+1} < \deg R_n$. We collect the results in the tabel:

$$P = Q(X^2 + 2X + 2) + (3X^4 + 3X^3 + 6X^2 + X + 2)$$
$$Q = (3X^4 + 3X^3 + 6X^2 + X + 2)(5X + 1) + (2X^3 + 4X + 6)$$
$$3X^4 + 3X^3 + 6X^2 + X + 2 = (2X^3 + 4X + 6)(5X + 5) + 0$$

Recall that $R_n = PU_n + QV_n$ where

$$U_{n+1} = U_{n-1} - Q_{n+1}U_n$$
$$V_{n+1} = V_{n-1} - Q_{n+1}V_n$$

where $U_{-1} = 1$, $V_{-1} = 0$, $U_0 = 0$, $V_0 = 1$.

n	R_n	Q_n	U_n	V_n
-1	Р	_	1	0
0	Q	_	0	1
1	$3X^4 + 3X^3 + 6X^2 + X + 2$			
2	$2X^3 + 4X + 6$	5X + 1	2X + 6	$5X^3 + 4X^2 + 5X + 3$

and so

$$P \cdot U_2 + Q \cdot V_2 = 2X^3 + 4X + 6$$

By convention the gcd of two polynomials is monic so we divide by 2 by multiplying with $4 \equiv 2^{-1} \pmod{7}$ to get

(a) $(P,Q) = X^3 + 2X + 3$ and (b) $P \cdot (X+3) + Q \cdot (6X^3 + 2X^2 + 6X + 5) = (P,Q).$

2. Show that the equation

$$x^2 + y^2 + z^2 = 20152015$$

has no integral solutions. [Hint: Try congruences modulo powers of 2.]

Proof. Modulo 2 or 4 as in class we get nowhere because $x^2 \equiv 0, 1 \pmod{4}$ and $x^2 + y^2 + z^2$ could take any residue mod 4. Modulo 8 though $x^2 \equiv 0, 1, 4 \pmod{8}$ and so $x^2 + y^2 + z^2 \equiv 0, 1, 2, 3, 4, 5, 6 \pmod{8}$ whereas $20152015 \equiv 7 \pmod{8}$.

3. Show that the equation

$$x^{216} - y^{216} + z^{216} - t^{216} = 5$$

has no integral solutions. [Hint: Use the Euler theorem modulo 9.]

Proof. From Euler we know that if x is coprime to 9 then $x^6 \equiv 1 \pmod{9}$ and so $x^{216} \equiv 1 \pmod{9}$. If x is divisible by 3 then clearly $x^{216} \equiv 0 \pmod{9}$ as $3^{216} \mid x^{216}$. Thus $x^{216} + z^{216} \equiv 0, 1, 2 \pmod{9}$. Therefore

$$x^{216} - y^{216} + z^{216} - t^{216} \mod 9 \in \{a + b \mod 9 | a, b \in \{0, 1, 2\}\} = \{0, 1, 2, 7, 8\}$$

and 5 mod 9 is not in this set.

4. Consider the diophantine equation

$$2x^2 + 7y^2 = 1$$

- (a) Show that it has no integral solutions but that it has (1/3, 1/3) as a rational solution.
- (b) Suppose $n \ge 2$ is an integer not divisible by 3. Show that there exist integers x, y such that

$$2x^2 + 7y^2 \equiv 1 \pmod{n}$$

[Hint: Use the rational solution from above.]

- *Proof.* (a) Suppose x or y is nonzero but integral. Then $x^2, y^2 \ge 1$ and so $2x^2 + 7y^2 \ge 2$ so the equation has no integral solutions. It is clear that (1/3, 1/3) is a rational solution as 2 + 7 = 9.
- (b) If n is not divisible by 3 then 3 is invertible mod n and so we could use the rational solution to produce a solution mod n. Suppose $k \equiv 3^{-1} \pmod{n}$. Then let's try x = k, y = k.

$$2x^{2} + 7y^{2} = 9k^{2}$$
$$= (3k)^{2}$$
$$\equiv 1^{2} \equiv 1 \pmod{n}$$

5. This is Exercise 4.3 on page 71. Let p be a prime and consider the rational number

$$\frac{m}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{p-1}$$

If p > 2 show that $p \mid m$. [Hint: consider the function $f : \mathbb{Z}_p^{\times} \to \mathbb{Z}_p^{\times}$ defined by $f(x) = x^{-1}$.]

Proof. It's enough to do this when m and n are coprime, i.e., if m/n is written in lowest terms. Clearing denominators the RHS has the denominator (p-1)! before simplification and so $n \mid (p-1)!$ which implies that n is invertible (mod p). Thus we need to show that

$$\frac{m}{n} = \sum_{k=1}^{p-1} k^{-1} \equiv 0 \pmod{p}$$

and now each k^{-1} can be taken modulo p separately and we need to show that

$$\sum_{k \in \mathbb{Z}_p^{\times}} (k^{-1} \mod p) \equiv 0 \pmod{p}$$

Recall that in proving Fermat's little Theorem the idea was that $\{ax|x \in \mathbb{Z}_p^{\times}\} = \{x|x \in \mathbb{Z}_p^{\times}\}$ if $p \nmid a$ as multiplication by a is bijective and therefore a permutation of \mathbb{Z}_p^{\times} . Then the product of all the elements of \mathbb{Z}_p^{\times} could be computed as the product of all the elements of either representation of \mathbb{Z}_p^{\times} . We employ the same idea here. The function $f(x) = x^{-1}$ is now bijective (it's surjective because $(x^{-1})^{-1} = x$ and since it's surjective on a finite set it's also bijective; alternatively if $x^{-1} = y^{-1}$ then immediately by inversion x = y so the function is also injective) and therefore

$$\{x^{-1}|x \in \mathbb{Z}_p^{\times}\} = \{x|x \in \mathbb{Z}_p^{\times}\}$$

Taking the sum of all the elements in two ways we deduce that

$$\sum_{k \in \mathbb{Z}_p^{\times}} (k^{-1} \mod p) = \sum_{k \in \mathbb{Z}_p^{\times}} k = \frac{(p-1)p}{2} \equiv 0 \pmod{p}$$

as p is odd and so (p-1)/2 is an integer.

6. Exercise 4.21 on page 82.

Proof. Note that p > 3. Then Wilson gives modulo p the equalities

$$-1 \equiv (p-1)!$$

$$\equiv (p-4)!(p-3)(p-2)(p-1)$$

$$\equiv (-1) \cdot (-2) \cdot (-3) \cdot (p-4)!$$

$$\equiv -6(p-4)! \pmod{p}$$

as $p - k \equiv -k \pmod{p}$. Finally we deduce $6(p - 4)! \equiv 1 \pmod{p}$.

7. Exercise 6.22 on page 118.

Proof. For the first part note that $p - 1 \equiv -1 \pmod{p}$ and so $(p - 1)! \equiv -(p - 2)! \pmod{p}$ which, using Wilson, yields $(p - 2)! \equiv 1 \pmod{p}$. For the second part we'd get

For the second part we'd get

$$-1 \equiv (p-1)! \equiv (p-3)!(p-2)(p-1) \equiv 2(p-3)! \pmod{p}$$

so $(p-3)! \equiv -2^{-1} \pmod{p}$. But if p is odd then (p-1)/2 is an integer and $2 \cdot (p-1)/2 \equiv p-1 \equiv -1 \pmod{p}$ and so $-2^{-1} \equiv (p-1)/2 \pmod{p}$. This implies the desired congruence.