
Math 40520 Theory of Number

Homework 2

Due Wednesday, 2015-09-16, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5.

1. Consider the polynomials P (X) = X7 + 6X6 + 3X5 + X4 + 5X3 + 3X2 + 5X + 4 and Q(X) =
X5 + 4X4 + 4X2 + X + 1 with coefficients in Z7 (modulo 7). Use the Euclidean algorithm to:

(a) Determine (P,Q). (Recall our convention that the gcd of two polynomials is the monic polynomial
of highest degree dividing both of them.)

(b) Find two polynomials U(X) and V (X) with coefficients in Z7 such that PU + QV = (P,Q).

Proof. We apply division with remainder as follows: R−1 = P , R0 = Q, Rn−1 = RnQn+1 +Rn+1 with
degRn+1 < degRn. We collect the results in the tabel:

P = Q(X2 + 2X + 2) + (3X4 + 3X3 + 6X2 + X + 2)

Q = (3X4 + 3X3 + 6X2 + X + 2)(5X + 1) + (2X3 + 4X + 6)

3X4 + 3X3 + 6X2 + X + 2 = (2X3 + 4X + 6)(5X + 5) + 0

Recall that Rn = PUn + QVn where

Un+1 = Un−1 −Qn+1Un

Vn+1 = Vn−1 −Qn+1Vn

where U−1 = 1, V−1 = 0, U0 = 0, V0 = 1.

n Rn Qn Un Vn

−1 P − 1 0
0 Q − 0 1
1 3X4 + 3X3 + 6X2 + X + 2 X2 + 2X + 2 1 −(X2 + 2X + 2)
2 2X3 + 4X + 6 5X + 1 2X + 6 5X3 + 4X2 + 5X + 3

and so
P · U2 + Q · V2 = 2X3 + 4X + 6

By convention the gcd of two polynomials is monic so we divide by 2 by multiplying with 4 ≡ 2−1

(mod 7) to get

(a) (P,Q) = X3 + 2X + 3 and

(b) P · (X + 3) + Q · (6X3 + 2X2 + 6X + 5) = (P,Q).
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2. Show that the equation
x2 + y2 + z2 = 20152015

has no integral solutions. [Hint: Try congruences modulo powers of 2.]

Proof. Modulo 2 or 4 as in class we get nowhere because x2 ≡ 0, 1 (mod 4) and x2 + y2 + z2 could
take any residue mod 4. Modulo 8 though x2 ≡ 0, 1, 4 (mod 8) and so x2 + y2 + z2 ≡ 0, 1, 2, 3, 4, 5, 6
(mod 8) whereas 20152015 ≡ 7 (mod 8).

3. Show that the equation
x216 − y216 + z216 − t216 = 5

has no integral solutions. [Hint: Use the Euler theorem modulo 9.]

Proof. From Euler we know that if x is coprime to 9 then x6 ≡ 1 (mod 9) and so x216 ≡ 1 (mod 9).
If x is divisible by 3 then clearly x216 ≡ 0 (mod 9) as 3216 | x216. Thus x216 + z216 ≡ 0, 1, 2 (mod 9).
Therefore

x216 − y216 + z216 − t216 mod 9 ∈ {a + b mod 9|a, b ∈ {0, 1, 2}} = {0, 1, 2, 7, 8}

and 5 mod 9 is not in this set.

4. Consider the diophantine equation
2x2 + 7y2 = 1

(a) Show that it has no integral solutions but that it has (1/3, 1/3) as a rational solution.

(b) Suppose n ≥ 2 is an integer not divisible by 3. Show that there exist integers x, y such that

2x2 + 7y2 ≡ 1 (mod n)

[Hint: Use the rational solution from above.]

Proof. (a) Suppose x or y is nonzero but integral. Then x2, y2 ≥ 1 and so 2x2 + 7y2 ≥ 2 so the
equation has no integral solutions. It is clear that (1/3, 1/3) is a rational solution as 2 + 7 = 9.

(b) If n is not divisible by 3 then 3 is invertible mod n and so we could use the rational solution to
produce a solution mod n. Suppose k ≡ 3−1 (mod n). Then let’s try x = k, y = k.

2x2 + 7y2 = 9k2

= (3k)2

≡ 12 ≡ 1 (mod n)

5. This is Exercise 4.3 on page 71. Let p be a prime and consider the rational number

m

n
= 1 +

1

2
+

1

3
+ · · ·+ 1

p− 1

If p > 2 show that p | m. [Hint: consider the function f : Z×p → Z×p defined by f(x) = x−1.]
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Proof. It’s enough to do this when m and n are coprime, i.e., if m/n is written in lowest terms. Clearing
denominators the RHS has the denominator (p − 1)! before simplification and so n | (p − 1)! which
implies that n is invertible (mod p). Thus we need to show that

m

n
=

p−1∑
k=1

k−1 ≡ 0 (mod p)

and now each k−1 can be taken modulo p separately and we need to show that∑
k∈Z×

p

(k−1 mod p) ≡ 0 (mod p)

Recall that in proving Fermat’s little Theorem the idea was that {ax|x ∈ Z×p } = {x|x ∈ Z×p } if p - a as
multiplication by a is bijective and therefore a permutation of Z×p . Then the product of all the elements
of Z×p could be computed as the product of all the elements of either representation of Z×p . We employ
the same idea here. The function f(x) = x−1 is now bijective (it’s surjective because (x−1)−1 = x and
since it’s surjective on a finite set it’s also bijective; alternatively if x−1 = y−1 then immediately by
inversion x = y so the function is also injective) and therefore

{x−1|x ∈ Z×p } = {x|x ∈ Z×p }

Taking the sum of all the elements in two ways we deduce that∑
k∈Z×

p

(k−1 mod p) =
∑
k∈Z×

p

k =
(p− 1)p

2
≡ 0 (mod p)

as p is odd and so (p− 1)/2 is an integer.

6. Exercise 4.21 on page 82.

Proof. Note that p > 3. Then Wilson gives modulo p the equalities

−1 ≡ (p− 1)!

≡ (p− 4)!(p− 3)(p− 2)(p− 1)

≡ (−1) · (−2) · (−3) · (p− 4)!

≡ −6(p− 4)! (mod p)

as p− k ≡ −k (mod p). Finally we deduce 6(p− 4)! ≡ 1 (mod p).

7. Exercise 6.22 on page 118.

Proof. For the first part note that p − 1 ≡ −1 (mod p) and so (p − 1)! ≡ −(p − 2)! (mod p) which,
using Wilson, yields (p− 2)! ≡ 1 (mod p).

For the second part we’d get

−1 ≡ (p− 1)! ≡ (p− 3)!(p− 2)(p− 1) ≡ 2(p− 3)! (mod p)

so (p− 3)! ≡ −2−1 (mod p). But if p is odd then (p− 1)/2 is an integer and 2 · (p− 1)/2 ≡ p− 1 ≡ −1
(mod p) and so −2−1 ≡ (p− 1)/2 (mod p). This implies the desired congruence.
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