
Math 40520 Theory of Number

Homework 3

Due Wednesday, 2015-09-23, in class

Do 5 of the following 7 problems. Please only attempt 5 because I will only grade 5.

1. Suppose n ≥ 2 and a ∈ Z×
n . Show that a has multiplicative order m modulo n if and only if the

following two conditions are satisfied:

(a) am ≡ 1 (mod n) and

(b) for every prime divisor p of m, am/p 6≡ 1 (mod n).

Proof. The only if part follows from the minimality of the multiplicative order. Now suppose that m is
as in the problem and r is the order of a. From class r | m and if r 6= m then there must exist a prime
p | m such that r | m/p. Indeed, take p to be any prime dividing m/r. Then am/p = (ar)m/(pr) ≡ 1
(mod n) getting a contradiction. Thus m = r is the order.

2. Suppose p is an odd prime and n ≥ 1. If d | ϕ(pn) show that there are exactly ϕ(d) numbers in Z×
pn of

multiplicative order d. [Hint: Use primitive roots and what you know about computing multiplicative
orders.] (Remark: In the textbook this is Theorem 6.5 whose proof takes up a few pages. Don’t
reproduce that proof here. The textbook deduces the existence of primitive roots from this theorem
whereas the point of this exercise is to go in the other direction, namely, deduce this fact from the
existence of primitive roots.)

Proof. Let a be a primitive root. Every element of Zpn is of the form ak for some k such that
0 ≤ k < ϕ(pn). This element has order d = ϕ(pn)/(ϕ(pn), k) which is then a divisor of ϕ(pn).
Fixing d we seek to count k between 0 and ϕ(pn) such that d = ϕ(pn)/(ϕ(pn), k) or, equivalently,
(ϕ(pn), k) = m = ϕ(pn)/d. Then we may write k = lm such that l is coprime to ϕ(pn)/m = d and
so we now seek to count l between 0 and d = ϕ(pn)/m coprime to d and there are ϕ(d) such l and
therefore that many elements of order d.

3. Suppose n ≥ 3. Let d = 2r | 2n−2. Show that there are 2ϕ(d) = 2r numbers in Z×
2n of multiplicative

order d = 2r unless d = 1 in which case there is one such number and d = 2 in which case there are 3
such numbers. (cf. Exercise 6.12 on page 107.) [Hint: Use primitive roots and what you know about
computing multiplicative orders.]

Proof. Recall that Z×
2n = {±3k} so we seek to count elements of the form 3k or −3k of order d = 2r.

From class the order of 3k is 2n−2/(2n−2, k) and this equals 2r if and only if (2n−2, k) = 2n−2−r, i.e.,
iff 2n−2−r | k and k/2n−2−r is odd. This is the same count as the number of odd k/2n−2−r between 0
and 2r − 1, which equals 2r−1. This count is true for all r ≥ 1, whereas when d = 1 = 20 then there is
exactly one element of order 1, namely 1.

We now count those −3k of order 2r. First, note that if ord2n(3k) > 2 then ord2n(−3k) = ord2n(3k).
Indeed, let 2r be this order. Then clearly (−3k)2

r

= 3k·2
r ≡ 1 (mod 2n). Since 2r > 2 it follows that
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2r−1 is even so again (−3k)2
r−1 ≡ (3k)2

r−1 6≡ 1 (mod 2n). Thus for order 2r with r ≥ 2 again the
number of such elements of order 2r is 2r−1. The total number of elements of order d = 2r with r ≥ 1
is thus 2 · 2r−1 = 2r as desired.

It remains to treat the case d = 1 in which case we already saw there is exactly one element of order
1 and the case d = 2. We counted 1 element of order 2 of the form 3k, namely 32

n−3

. If an element
of the form −3k has order 2 then necessarily 3k has order 1 or 2 or otherwise 3k would have the same
order as −3k. Thus 3k is either 1 (order 1) or 32

n−3

(order 2). Clearly −1 has order 2 and −32
n−3

also

has square 1 but is clearly not 1. Thus the 3 elements of order 2 are −1 and ±32
n−3

.

4. Show that if n ≥ 1 is an integer then

72
n

≡ 1 + 2n+3 (mod 2n+4)

and determine the multiplicative order of 7 modulo 2m for integers m ≥ 1.

Proof. The congruence follows from the following problem using 7 = 23 − 1. For the multiplicative
order part, we can use the following problem when m ≥ 4 to deduce that 7 has multiplicative order
2m−3.

For m = 1 note that 7 ≡ 1 so has order 1. For m = 2, 3, 7 ≡ −1 (mod 2m), which has order 2.

5. (This is a slight generalization of the previous problem, but equal in difficulty.) Suppose k ≥ 2 and
n ≥ 1 are integers. Show that

(2k ± 1)2
n

≡ 1 + 2k+n (mod 2k+n+1)

and determine the multiplicative order of 2k ± 1 modulo 2m for integers m ≥ k + 2. (In class we did
the case k = 1 and 3 = 21 + 1, in the textbook, Lemma 6.9, they do k = 2 and 5 = 22 + 1 and the
previous exercise does k = 3 and 7 = 23 − 1.)

Proof. We do this by induction on n. The case n = 1 is the base case. Then (2k ± 1)2 ≡ 1 ± 2k+1

(mod 2k+2) and now clearly 2k+1 ≡ −2k+1 (mod 2k+2) so the relation follows.

For the inductive step, write (2k ± 1)2
n

= 1 + 2k+n + 2k+n+1a. Then

(2k ± 1)2
n+1

= (1 + 2k+n + 2k+n+1a)2

= 1 + 22(k+n) + 22(k+n+1)a2 + 2k+n+1 + 2k+n+2a + 22k+2n+1a

≡ 1 + 2k+n+1 (mod 2k+n+2)

as 2(k + n) ≥ k + n + 2.

6. Exercise 6.13 on page 108. [Hint: You need to show that all elements in the set are distinct. Use your
knowledge of the multiplicative order of 3.] (In the textbook Un = Z×

n .)

Proof. From class we need to show that the 2n−1 elements {±3k|0 ≤ k < n − 2} are distinct in Z×
2n .

Since this set has 2n−1 elements and we exhibited 2n−1 distinct elements in the former set it follows
that the two sets are equal. Suppose that 3i = 3j or −3i = −3j for i > j in {0, 1, . . . , n − 3}. Then
3i−j = 1 where i − j is nonzero but smaller than n − 3 which contradicts the fact we proved in class
that ord2n(3) = 2n−2. Now suppose that 3i = −3j for i 6= j. Then 3i−j = −1 which has order 2. The
order of 3i−j is 2n−2/(2n−2, i− j) so we’d need that (2n−2, i− j) = 2n−3. As i− j can be taken positive

but less than 2n−2 the only possibility is i − j = 2n−3. But 32
n−3 ≡ 1 + 2n−1 6≡ −1 (mod 2n) so we

get a contradiction.
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7. A restatement of Exercise 6.10 on page 106. Show that 3 is always a primitive root modulo 7n for all
n. [Hint: Start with 36 ≡ 1+7 ·6 (mod 72) and emulate how we showed that 3 had order 2n−2 modulo
2n.]

Proof. By induction, as in class, we get that 36·7
n ≡ 1 + 7n+1 · 6 (mod 7n+2). To check that the

order of 3 modulo 7n is indeed 6 · 7n−1 = ϕ(7n) we use the first exercise. First, clearly 36·7
n−1 ≡ 1

(mod 7n). Next we have to check that 36·7
n−2 6≡ 1 which is clear as it is ≡ 1 + 7n−1 · 6 (mod 7n). We

also have to check that 32·7
n−1

and 33·7
n−1

are 6≡ 1 (mod 7n). But then these congruences would also

yield congruences modulo 7 as well so we’d have 32·7
n−1

or 33·7
n−1

is ≡ 1 (mod 7). But 3 has order 6
modulo 7 so we’d have 6 | 2 · 7n−1 or 6 mod 3 · 7n−1 which is clearly impossible.

8. (A generalization of the previous problem. You should at least read this problem.) Suppose p is a
prime, n ≥ 2 and a is an integer such that a is a primitive root modulo p2. Show that a is then also a
primitive root modulo pn for all n. [Hint: Show that ap−1 ≡ 1 + p · b (mod p2) where b 6≡ 0 (mod p)
and look at the hint of the previous problem.]

Proof. As ap−1 ≡ 1 (mod p) it follows that ap−1 ≡ 1 + p · b (mod p2) for some b and since a has order
p(p− 1) modulo p2 it follows that p - b. By induction we again get that

a(p−1)pn

≡ 1 + pn+1 · b (mod pn+2)

and so a(p−1)pn−2 6≡ 1 (mod pn). To show that a has order pn−1(p − 1) we use Exercise 1. We need

to check that a(p−1)pn−2 6≡ 1 (mod pn), which we already did, and for each prime q | (p − 1) that

ap
n−1(p−1)/q 6≡ 1 (mod pn). Suppose ap

n−1(p−1)/q ≡ 1 (mod pn) for some q. Then reduce modulo p2.
As a is primitive modulo p2, it has order p(p− 1) and so p(p− 1) | pn−1(p− 1)/q which is impossible
as p and p− 1 are coprime and p− 1 - (p− 1)/q.
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