
Math 40520 Theory of Number

Homework 4

Due Wednesday, 2015-09-30, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.

1. (This is not a hard exercise, even if it looks very long.) In this exercise you will multiply two positive
integers using only doubling, halving and additions. Suppose m and n are two positive integers. Put m
and n on the same row in a table with two columns. You will iterate the following operation. Taking
the last row of the column, multiply by 2 the left entry and divide by 2 the right entry and put the new
values on the next row, forgetting about decimals. When the right row becomes 0, stop the iteration.
Eliminate from the column every row in which the right entry is even, then add all the remaining left
entries. This sum will then be the product m · n. For example

x× 2 bx/2c
23 25
46 12
92 6
184 3
368 1
736 0

yield 23 · 25 = 575 = 368 + 184 + 23.

(a) Write m = m1m2 · · ·mk(2) and n = n1n2 . . . nk(2) in base 2. Show that the table, all entries
written in base 2, is

x× 2 bx/2c
m1m2 · · ·mk n1n2 . . . nk

m1m2 · · ·mk0 n1n2 . . . nk−1
m1m2 · · ·mk00 n1n2 . . . nk−2
...

...
m1m2 · · ·mk 00 . . . 0︸ ︷︷ ︸

k−1

n1

m1m2 · · ·mk 00 . . . 0︸ ︷︷ ︸
k

0

(b) Show that the algorithm is correct. [Hint: Write out multiplication in base 2.]

Proof. (a): In base 2 multiplication by 2 is adding a 0 whereas dividing by 2 means shifting the decimal
point one place to the left. Forgetting about decimals this means dropping the last digit.

(b): Summing up the left entries where the right entries are odd means, using part (a), that

S =
∑

0≤i≤k,ni=1

m1 . . .mk 00 . . . 0︸ ︷︷ ︸
i
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which can be rewritten as

S =

k∑
i=0

m1 . . .mk 00 . . . 0︸ ︷︷ ︸
i

· ni

=

k∑
i=0

m · ni2
i

= m

k∑
i=0

ni2
i

= m · n

2. Let p be a prime and n ≥ 1 an integer written in base p as n = nknk−1 . . . n1n0(p).

(a) (Optional) Show that (
n

0

)2

+

(
n

1

)2

+ · · ·+
(
n

n

)2

=

(
2n

n

)
[Hint: Compute the coefficient of xn in (1 + x)2n = (1 + x)n · (1 + x)n.]

(b) Writing i ≤ n as i = ik . . . i1i0(p) show that

n∑
i=0

(
n

i

)2

≡
nk∑

ik=0

· · ·
n0∑

i0=0

(
nk

ik

)2

· · ·
(
n1

i1

)2(
n0

i0

)2

(mod p)

[Hint: Use the theorem from class and the fact that

(
a

b

)
= 0 unless b ≤ a.]

(c) Use the previous two parts to deduce that(
2n

n

)
≡
(

2nk

nk

)(
2nk−1

nk−1

)
· · ·
(

2n0

n0

)
(mod p)

(d) (Optional, but immediate) Show that p |
(

2n

n

)
if and only if n, written in base p, has a digit

≥ p/2.

Proof. (a):
(
2n
n

)
is the coefficient of xn in (1 + x)2n = (1 + x)n · (1 + x)n. Expanding we seek the

coefficient of xn in
n∑

i=0

(
n

i

)
xi

n∑
j=0

(
n

j

)
xj =

∑
0≤i,j≤n

(
n

i

)(
n

j

)
xi+j

thus the coefficient is (
2n

n

)
=
∑

i+j=n

(
n

i

)(
n

j

)

=

n∑
i=0

(
n

i

)(
n

n− i

)

=

n∑
i=0

(
n

i

)2
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as
(

n
n−i
)

=
(
n
i

)
.

(b): We know that (
n

i

)
≡
(
nk

ik

)
· · ·
(
n0

i0

)
(mod p)

and this is zero whenever ij > nj for some j. Thus

n∑
i=0

(
n

i

)2

≡
∑

ik...i0≤nk...n0

(
nk

ik

)2

· · ·
(
n1

i1

)2(
n0

i0

)2

(mod p)

≡
∑

ik...i0≤nk...n0,i0≤n0,...,ik≤nk

(
nk

ik

)2

· · ·
(
n1

i1

)2(
n0

i0

)2

(mod p)

If ik ≤ nk, . . . , i0 ≤ n0 then automatically ik . . . i0 ≤ nk . . . n0 so part (b) follows.

(c): We factor the RHS of part (b) to get

n∑
i=0

(
n

i

)2

≡
nk∑

ik=0

· · ·
n0∑

i0=0

(
nk

ik

)2

· · ·
(
n1

i1

)2(
n0

i0

)2

(mod p)

≡
nk∑

ik=0

(
nk

ik

)2

· · ·
n0∑

i0=0

(
n0

i0

)2

(mod p)

≡
(

2nk

nk

)
· · ·
(

2n0

n0

)
(mod p)

where the last line follows from part (a).

(d): From part (c) we have
(
2n
n

)
≡ 0 (mod p) iff

(
2nj

nj

)
≡ 0 (mod p) for some digit nj . If nj < p/2 then

2nj < p and so in the expression
(
2nj

nj

)
=

(2nj)!

(nj !)2
the factor p does not appear at all in the numerator

so it cannot be divisible by p. If nj ≥ p/2 then 2(p − 1) ≥ 2nj ≥ p so the base p expansion of 2nj

is 2nj = 1a(p) where a = 2nj − p. Then
(
2nj

nj

)
≡
(
1
0

)(
a
nj

)
(mod p). But a = 2nj − p < nj and so(

a
nj

)
= 0.

3. Exercise 4.15 on page 81.

Proof. First note that any solution mod 52 yields a solution mod 5. So we first solve x3+4x2+9x+1 ≡ 0
(mod 5). But x3 + 4x2 + 9x + 1 ≡ x3 − x2 − x + 1 ≡ (x2 − 1)(x− 1) = (x− 1)2(x + 1) (mod 5) so the
two solutions are x = ±1. To solve the equation modulo 52 we apply Hensel’s lemma to each of the
two solutions modulo 5.

Starting with x1 = −1, P (−1) = −15 and P ′(−1) ≡ −1 (mod 5) with inverse −1 mod 5. Thus Hensel
implies that x2 = x1 − P (x1) · (−1) = −1 − (−15) · (−1) = −16 is the only solution of P (X) ≡ 0
(mod 52) with X ≡ −1 (mod 5).

Next, we start with x1 = 1, P (1) = 25 and P ′(1) ≡ 0 (mod 5). Applying Hensel’s lemma again we
note that 5 | P (1)/5 and so there are exactly 5 solutions to P (X) ≡ 0 (mod 52) with X ≡ 1 (mod 5).
Thus we seek solutions to the equation Q(y) = P (1 + 5y) ≡ (mod 52). We know that there are 5
such solutions but in Z52 there are exactly 5 elements of the form 1 + 5y and so 1, 6, 11, 16, 21 are all
solutions to P (X) ≡ 0 (mod 52) with X ≡ 1 (mod 5).

Thus the solutions are 1, 6, 11, 16, 21,−16 ≡ 9 (mod 25).
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4. Exercise 4.16 on page 81.

Proof. Case e = 1. We solve x3 − x − 1 ≡ 0 (mod 5) and note by brute force that only x = 2 is a
solution mod 5.

Case e = 2. Any solution is a lift of x = 2 (mod 5). Note that P (2) = 5 and P ′(2) = 11 with inverse
1 mod 5. Thus Hensel implies that x2 = 2− 5 · 1 = −3 is the only solution mod 25.

Case e = 3. We lift again using Hensel’s lemma. The only solution mod 125 is x3 = −3 − P (−3) =
−3 + 25 = 22.

5. Exercise 6.17 on page 113. (You have two means of solving this: either primitive roots, or Hensel’s
lemma.)

Proof. First solution: Recall that Z×32 = {±1,±3,±32,±33, . . . ,±37} as 32 = 25. Note that the
order of 7 must be a power of 2 so we check: 72 = 49 ≡ 17 (mod 32) and 74 ≡ 172 ≡ 1 (mod 32)
so 7 has order 4. From the previous homework we know that there are 4 elements of order 4 in Z×32.
Since 3 has order 8 these four elements are of the form ±32r where r is odd and so they are ±32 ≡ ±9
and ±36 = ±7. Checking we get that 7 = −36 (mod 32). Finally, we need to solve x11 =≡ 7 ≡ −36

(mod 32) and we know that x = ±3r. Thus we need ±311r ≡ −36 (mod 11).

Immediately the sign must be − and so we need 311r ≡ 36 (mod 32). As 3 has order 8 this is equivalent
to 11r ≡ 6 (mod 8). 11 is invertible mod 8 and has inverse 3 so this is equivalent to r ≡ 3 · 6 ≡ 18 ≡ 2
(mod 8). As 0 ≤ r ≤ 7 this implies that r = 2. Thus the equation has exactly one solution, namely
x = −32 = −9.

Second solution: Clearly (−1)11 ≡ 1 (mod 2) so we may use Hensel’s lemma to lift solutions to
mod 32. Since P ′(−1) = 11 with inverse 1 Hensel’s lemma implies the uniqueness of lifts to mod 2n

for all exponents n. As P (−1) = −8 ≡ 0 (mod 23) we may even start Hensel at x3 = −1. Then
x4 = x3 − P (x3) = −1− (−8) = 7 and x5 = x4 − P (x4) = 7− (711 − 7) ≡ −9 (mod 32) which is then
the unique solution.

6. Let p > 3 be a prime number. Find a solution in Zp6 to the equation

x3 ≡ 1 + p2 (mod p6)

Proof. First solution: Again we may use Hensel’s lemma because mod p there’s the easy solution
x = 1 with P ′(1) = 3 invertible mod p. Since P (1) ≡ 0 (mod p2) we may start at x2 = 1. Then
x3 = x2 − P (x2)/3 = 1 + p2/3. Note that P (x3) = (1 + p2/3)3 − 1 − p2 ≡ 0 (mod 4) so x4 = x3.
Since P (x4) = P (1 + p2/3) = p4/3 + p6/27 we get x5 = x4−P (x4)/3 = 1 + p2/3− (p4/3 + p6/27)/3 =
1 + p2/3 − p4/9 − p6/27. Then x5 is the unique solution modulo p5 lifting 1 mod p but a simple
verification shows that even modulo p6 we have P (x5) ≡ P (1+p2/3−p4/9) = (1+p2/3−p4/9)3−1−p2 ≡
(1 + p2/3)3− (1 + p2/3)p4/3 (mod p6) ≡ 1 + p2 + p4/3− p4/3− 1− p2 ≡ 0 (mod p6) so 1 + p2/3− p4/9
is the unique solution modulo p6 lifting 1 (mod p).

Second solution: Let’s try Taylor expansions and hope things make sense. Then

x ≡ (1 + p2)1/3 (mod p6)

≡ 1 +

(
1/3

1

)
p2 +

(
1/3

2

)
p4 + · · · (mod p6)

Note that (
1/3

k

)
=

1
3 ( 1

3 − 1) · · · ( 1
3 − (k − 1))

k!
=

(−1)k−1(3k − 4)(3k − 7) · · · 5 · 2
k!3k
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so (
1/3

k

)
p2k =

(−1)k−1(3k − 4)(3k − 7) · · · 5 · 2
3k

p2k

k!

and the exponent of p in k! is certainly less than k. In fact it is less than k(1/p+1/p2+ · · · ) = k/(p−1).
Thus every term in the sum makes sense modulo p6 and we may in fact truncate after k = 6. Thus

x ≡ 1 + p2/3− p4/32 + 5p6/34 − 10p8/35 + 22p12/36 (mod p6)

≡ 1 + p2/3− p4/9 (mod p6)

as p > 3.

7. Let m and n be two positive integers.

(a) If m = nq+r is division with remainder show that as polynomials Xm−1 = (Xn−1)Q(X)+Xr−1
is division with remainder.

(b) Deduce that as polynomials (Xm − 1, Xn − 1) = X(m,n) − 1.

Proof. (a):

Xm − 1 = Xnq+r − 1

= Xnq+r −Xr + Xr − 1

= Xr(Xnq − 1) + Xr − 1

= Xr(Xn − 1)(1 + Xn + · · ·+ Xn(r−1)) + Xr − 1

= (Xn − 1)Q(X) + Xr − 1

where deg(Xr − 1) < deg(Xn − 1).

(b): Suppose m ≥ n. We’ll do by induction on n. The base case is n = 0 in which case immediately
Xm − 1 | Xn − 1 = 0 and so the gcd is Xm − 1 = X(m,0) − 1. We know that (m,n) = (n, r) from
the Euclidean algorithm for Z. Part (a) and the Euclidean algorithm for polynomials also implies that
(Xm − 1, Xn − 1) = (Xn − 1, Xr − 1). As r < n we can apply the inductive hypothesis to deduce that
(Xm − 1, Xn − 1) = X(n,r) − 1 = X(m,n) − 1.

8. Show that ∑
4|k

(
781

k

)
≡ 1 (mod 5)

[Hint: What is a base 5 criterion for divisibility by 4?] (This is a special case of a general result of
Hermite.)

Proof. In base a, a number is divisible by a − 1 iff the sum of its base a digits are divisible by a − 1.
(Think divisibility by 9 in base 10.)

Since 781 = 11111(5) we need to find

S =
∑

k=k4k3k2k1k0(5),4|k0+···k4

(
11111(5)

k4k3k2k1k0(5)

)
≡

∑
k=k4k3k2k1k0(5),4|k0+···k4

(
1

k4

)
· · ·
(

1

k0

)
(mod 5)

In the RHS the only way to get a nonzero term is if k0, k1, k2, k3, k4 are either 0 or 1 or else the binomial
factor in the product is 0. Thus the sum k0 + · · ·+ k4 is either 0 or 4. In the former case all digits of
k are 0 while in the later four are 1 and one is 0. There are 5 such possibilities. Therefore

S ≡
(

1

0

)5

+

(
11111

01111

)
+

(
11111

10111

)
+

(
11111

11011

)
+

(
11111

11101

)
+

(
11111

11110

)
≡ 1 + 5

(
1

1

)4(
1

0

)
≡ 1 (mod 5)
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