Math 40520 Theory of Number Homework 4

Due Wednesday, 2015-09-30, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5 .

1. (This is not a hard exercise, even if it looks very long.) In this exercise you will multiply two positive integers using only doubling, halving and additions. Suppose m and n are two positive integers. Put m and n on the same row in a table with two columns. You will iterate the following operation. Taking the last row of the column, multiply by 2 the left entry and divide by 2 the right entry and put the new values on the next row, forgetting about decimals. When the right row becomes 0 , stop the iteration. Eliminate from the column every row in which the right entry is even, then add all the remaining left entries. This sum will then be the product $m \cdot n$. For example

$x \times 2$	$\lfloor x / 2\rfloor$
23	25
46	12
92	6
184	3
368	1
736	θ

yield $23 \cdot 25=575=368+184+23$.
(a) Write $m=\overline{m_{1} m_{2} \cdots m_{k}}(2)$ and $n=\overline{n_{1} n_{2} \cdots n_{k}}(2)$ in base 2. Show that the table, all entries written in base 2 , is

$x \times 2$	$\lfloor x / 2\rfloor$
$\overline{m_{1} m_{2} \cdots m_{k}}$	$\overline{n_{1} n_{2} \cdots n_{k}}$
$\frac{m_{1} m_{2} \cdots m_{k} 0}{m_{1} m_{2} \cdots m_{k} 00}$	$\overline{n_{1} n_{2} \cdots n_{k-1}}$
\vdots	$\overline{n_{1} n_{2} \cdots n_{k-2}}$
$\overline{m_{1} m_{2} \cdots m_{k} \underbrace{00 \ldots 0}_{k-1}}$	\vdots
$\overline{m_{1} m_{2} \cdots m_{k}} \underbrace{00 \ldots 0}_{k}$	0

(b) Show that the algorithm is correct. [Hint: Write out multiplication in base 2.]

Proof. (a): In base 2 multiplication by 2 is adding a 0 whereas dividing by 2 means shifting the decimal point one place to the left. Forgetting about decimals this means dropping the last digit.
(b): Summing up the left entries where the right entries are odd means, using part (a), that

$$
S=\sum_{0 \leq i \leq k, n_{i}=1} \overline{m_{1} \ldots m_{k} \underbrace{00 \ldots 0}_{i}}
$$

which can be rewritten as

$$
\begin{aligned}
S & =\sum_{i=0}^{k} \overline{m_{1} \ldots m_{k} \underbrace{00 \ldots 0}_{i}} \cdot n_{i} \\
& =\sum_{i=0}^{k} m \cdot n_{i} 2^{i} \\
& =m \sum_{i=0}^{k} n_{i} 2^{i} \\
& =m \cdot n
\end{aligned}
$$

2. Let p be a prime and $n \geq 1$ an integer written in base p as $n=\overline{n_{k} n_{k-1} \ldots n_{1} n_{0}}(p)$.
(a) (Optional) Show that

$$
\binom{n}{0}^{2}+\binom{n}{1}^{2}+\cdots+\binom{n}{n}^{2}=\binom{2 n}{n}
$$

[Hint: Compute the coefficient of x^{n} in $(1+x)^{2 n}=(1+x)^{n} \cdot(1+x)^{n}$.]
(b) Writing $i \leq n$ as $i=\overline{i_{k} \ldots i_{1} i_{0}}(p)$ show that

$$
\sum_{i=0}^{n}\binom{n}{i}^{2} \equiv \sum_{i_{k}=0}^{n_{k}} \cdots \sum_{i_{0}=0}^{n_{0}}\binom{n_{k}}{i_{k}}^{2} \cdots\binom{n_{1}}{i_{1}}^{2}\binom{n_{0}}{i_{0}}^{2} \quad(\bmod p)
$$

[Hint: Use the theorem from class and the fact that $\binom{a}{b}=0$ unless $b \leq a$.]
(c) Use the previous two parts to deduce that

$$
\binom{2 n}{n} \equiv\binom{2 n_{k}}{n_{k}}\binom{2 n_{k-1}}{n_{k-1}} \cdots\binom{2 n_{0}}{n_{0}} \quad(\bmod p)
$$

(d) (Optional, but immediate) Show that $p \left\lvert\,\binom{ 2 n}{n}\right.$ if and only if n, written in base p, has a digit $\geq p / 2$.

Proof. (a): $\binom{2 n}{n}$ is the coefficient of x^{n} in $(1+x)^{2 n}=(1+x)^{n} \cdot(1+x)^{n}$. Expanding we seek the coefficient of x^{n} in

$$
\sum_{i=0}^{n}\binom{n}{i} x^{i} \sum_{j=0}^{n}\binom{n}{j} x^{j}=\sum_{0 \leq i, j \leq n}\binom{n}{i}\binom{n}{j} x^{i+j}
$$

thus the coefficient is

$$
\begin{aligned}
\binom{2 n}{n} & =\sum_{i+j=n}\binom{n}{i}\binom{n}{j} \\
& =\sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i} \\
& =\sum_{i=0}^{n}\binom{n}{i}^{2}
\end{aligned}
$$

as $\binom{n}{n-i}=\binom{n}{i}$.
(b): We know that

$$
\binom{n}{i} \equiv\binom{n_{k}}{i_{k}} \cdots\binom{n_{0}}{i_{0}} \quad(\bmod p)
$$

and this is zero whenever $i_{j}>n_{j}$ for some j. Thus

$$
\begin{aligned}
\sum_{i=0}^{n}\binom{n}{i}^{2} & \equiv \sum_{\overline{i_{k} \ldots i_{0}} \leq \overline{n_{k} \ldots n_{0}}}\binom{n_{k}}{i_{k}}^{2} \cdots\binom{n_{1}}{i_{1}}^{2}\binom{n_{0}}{i_{0}}^{2}(\bmod p) \\
& \equiv \sum_{\overline{i_{k} \ldots i_{0}} \leq \overline{n_{k} \ldots n_{0}, i_{0} \leq n_{0}, \ldots, i_{k} \leq n_{k}}}\binom{n_{k}}{i_{k}}^{2} \cdots\binom{n_{1}}{i_{1}}^{2}\binom{n_{0}}{i_{0}}^{2}(\bmod p)
\end{aligned}
$$

If $i_{k} \leq n_{k}, \ldots, i_{0} \leq n_{0}$ then automatically $\overline{i_{k} \ldots i_{0}} \leq \overline{n_{k} \ldots n_{0}}$ so part (b) follows.
(c): We factor the RHS of part (b) to get

$$
\begin{aligned}
\sum_{i=0}^{n}\binom{n}{i}^{2} & \equiv \sum_{i_{k}=0}^{n_{k}} \cdots \sum_{i_{0}=0}^{n_{0}}\binom{n_{k}}{i_{k}}^{2} \cdots\binom{n_{1}}{i_{1}}^{2}\binom{n_{0}}{i_{0}}^{2} \quad(\bmod p) \\
& \equiv \sum_{i_{k}=0}^{n_{k}}\binom{n_{k}}{i_{k}}^{2} \cdots \sum_{i_{0}=0}^{n_{0}}\binom{n_{0}}{i_{0}}^{2}(\bmod p) \\
& \equiv\binom{2 n_{k}}{n_{k}} \cdots\binom{2 n_{0}}{n_{0}}(\bmod p)
\end{aligned}
$$

where the last line follows from part (a).
(d): From part (c) we have $\binom{2 n}{n} \equiv 0(\bmod p)$ iff $\binom{2 n_{j}}{n_{j}} \equiv 0(\bmod p)$ for some digit n_{j}. If $n_{j}<p / 2$ then $2 n_{j}<p$ and so in the expression $\binom{2 n_{j}}{n_{j}}=\frac{\left(2 n_{j}\right)!}{\left(n_{j}!\right)^{2}}$ the factor p does not appear at all in the numerator so it cannot be divisible by p. If $n_{j} \geq p / 2$ then $2(p-1) \geq 2 n_{j} \geq p$ so the base p expansion of $2 n_{j}$ is $2 n_{j}=\overline{1 a}_{(p)}$ where $a=2 n_{j}-p$. Then $\binom{2 n_{j}}{n_{j}} \equiv\binom{1}{0}\binom{a}{n_{j}}(\bmod p)$. But $a=2 n_{j}-p<n_{j}$ and so $\binom{a}{n_{j}}=0$.
3. Exercise 4.15 on page 81 .

Proof. First note that any solution mod 5^{2} yields a solution mod 5 . So we first solve $x^{3}+4 x^{2}+9 x+1 \equiv 0$ $(\bmod 5)$. But $x^{3}+4 x^{2}+9 x+1 \equiv x^{3}-x^{2}-x+1 \equiv\left(x^{2}-1\right)(x-1)=(x-1)^{2}(x+1)(\bmod 5)$ so the two solutions are $x= \pm 1$. To solve the equation modulo 5^{2} we apply Hensel's lemma to each of the two solutions modulo 5 .
Starting with $x_{1}=-1, P(-1)=-15$ and $P^{\prime}(-1) \equiv-1(\bmod 5)$ with inverse $-1 \bmod 5$. Thus Hensel implies that $x_{2}=x_{1}-P\left(x_{1}\right) \cdot(-1)=-1-(-15) \cdot(-1)=-16$ is the only solution of $P(X) \equiv 0$ $\left(\bmod 5^{2}\right)$ with $X \equiv-1(\bmod 5)$.

Next, we start with $x_{1}=1, P(1)=25$ and $P^{\prime}(1) \equiv 0(\bmod 5)$. Applying Hensel's lemma again we note that $5 \mid P(1) / 5$ and so there are exactly 5 solutions to $P(X) \equiv 0\left(\bmod 5^{2}\right)$ with $X \equiv 1(\bmod 5)$. Thus we seek solutions to the equation $Q(y)=P(1+5 y) \equiv\left(\bmod 5^{2}\right)$. We know that there are 5 such solutions but in $\mathbb{Z}_{5^{2}}$ there are exactly 5 elements of the form $1+5 y$ and so $1,6,11,16,21$ are all solutions to $P(X) \equiv 0\left(\bmod 5^{2}\right)$ with $X \equiv 1(\bmod 5)$.
Thus the solutions are $1,6,11,16,21,-16 \equiv 9(\bmod 25)$.
4. Exercise 4.16 on page 81 .

Proof. Case $e=1$. We solve $x^{3}-x-1 \equiv 0(\bmod 5)$ and note by brute force that only $x=2$ is a solution mod 5.

Case $e=2$. Any solution is a lift of $x=2(\bmod 5)$. Note that $P(2)=5$ and $P^{\prime}(2)=11$ with inverse $1 \bmod 5$. Thus Hensel implies that $x_{2}=2-5 \cdot 1=-3$ is the only solution mod 25.
Case $e=3$. We lift again using Hensel's lemma. The only solution mod 125 is $x_{3}=-3-P(-3)=$ $-3+25=22$.
5. Exercise 6.17 on page 113. (You have two means of solving this: either primitive roots, or Hensel's lemma.)

Proof. First solution: Recall that $\mathbb{Z}_{32}^{\times}=\left\{ \pm 1, \pm 3, \pm 3^{2}, \pm 3^{3}, \ldots, \pm 3^{7}\right\}$ as $32=2^{5}$. Note that the order of 7 must be a power of 2 so we check: $7^{2}=49 \equiv 17(\bmod 32)$ and $7^{4} \equiv 17^{2} \equiv 1(\bmod 32)$ so 7 has order 4 . From the previous homework we know that there are 4 elements of order 4 in \mathbb{Z}_{32}^{\times}. Since 3 has order 8 these four elements are of the form $\pm 3^{2 r}$ where r is odd and so they are $\pm 3^{2} \equiv \pm 9$ and $\pm 3^{6}= \pm 7$. Checking we get that $7=-3^{6}(\bmod 32)$. Finally, we need to solve $x^{11}=\equiv 7 \equiv-3^{6}$ $(\bmod 32)$ and we know that $x= \pm 3^{r}$. Thus we need $\pm 3^{11 r} \equiv-3^{6}(\bmod 11)$.
Immediately the sign must be - and so we need $3^{11 r} \equiv 3^{6}(\bmod 32)$. As 3 has order 8 this is equivalent to $11 r \equiv 6(\bmod 8) .11$ is invertible $\bmod 8$ and has inverse 3 so this is equivalent to $r \equiv 3 \cdot 6 \equiv 18 \equiv 2$ $(\bmod 8)$. As $0 \leq r \leq 7$ this implies that $r=2$. Thus the equation has exactly one solution, namely $x=-3^{2}=-9$.
Second solution: Clearly $(-1)^{11} \equiv 1(\bmod 2)$ so we may use Hensel's lemma to lift solutions to $\bmod 32$. Since $P^{\prime}(-1)=11$ with inverse 1 Hensel's lemma implies the uniqueness of lifts to mod 2^{n} for all exponents n. As $P(-1)=-8 \equiv 0\left(\bmod 2^{3}\right)$ we may even start Hensel at $x_{3}=-1$. Then $x_{4}=x_{3}-P\left(x_{3}\right)=-1-(-8)=7$ and $x_{5}=x_{4}-P\left(x_{4}\right)=7-\left(7^{11}-7\right) \equiv-9(\bmod 32)$ which is then the unique solution.
6. Let $p>3$ be a prime number. Find a solution in $\mathbb{Z}_{p^{6}}$ to the equation

$$
x^{3} \equiv 1+p^{2} \quad\left(\bmod p^{6}\right)
$$

Proof. First solution: Again we may use Hensel's lemma because mod p there's the easy solution $x=1$ with $P^{\prime}(1)=3$ invertible $\bmod p$. Since $P(1) \equiv 0\left(\bmod p^{2}\right)$ we may start at $x_{2}=1$. Then $x_{3}=x_{2}-P\left(x_{2}\right) / 3=1+p^{2} / 3$. Note that $P\left(x_{3}\right)=\left(1+p^{2} / 3\right)^{3}-1-p^{2} \equiv 0(\bmod 4)$ so $x_{4}=x_{3}$. Since $P\left(x_{4}\right)=P\left(1+p^{2} / 3\right)=p^{4} / 3+p^{6} / 27$ we get $x_{5}=x_{4}-P\left(x_{4}\right) / 3=1+p^{2} / 3-\left(p^{4} / 3+p^{6} / 27\right) / 3=$ $1+p^{2} / 3-p^{4} / 9-p^{6} / 27$. Then x_{5} is the unique solution modulo p^{5} lifting $1 \bmod p$ but a simple verification shows that even modulo p^{6} we have $P\left(x_{5}\right) \equiv P\left(1+p^{2} / 3-p^{4} / 9\right)=\left(1+p^{2} / 3-p^{4} / 9\right)^{3}-1-p^{2} \equiv$ $\left(1+p^{2} / 3\right)^{3}-\left(1+p^{2} / 3\right) p^{4} / 3\left(\bmod p^{6}\right) \equiv 1+p^{2}+p^{4} / 3-p^{4} / 3-1-p^{2} \equiv 0\left(\bmod p^{6}\right)$ so $1+p^{2} / 3-p^{4} / 9$ is the unique solution modulo p^{6} lifting $1(\bmod p)$.

Second solution: Let's try Taylor expansions and hope things make sense. Then

$$
\begin{aligned}
x & \equiv\left(1+p^{2}\right)^{1 / 3} \quad\left(\bmod p^{6}\right) \\
& \equiv 1+\binom{1 / 3}{1} p^{2}+\binom{1 / 3}{2} p^{4}+\cdots \quad\left(\bmod p^{6}\right)
\end{aligned}
$$

Note that

$$
\binom{1 / 3}{k}=\frac{\frac{1}{3}\left(\frac{1}{3}-1\right) \cdots\left(\frac{1}{3}-(k-1)\right)}{k!}=\frac{(-1)^{k-1}(3 k-4)(3 k-7) \cdots 5 \cdot 2}{k!3^{k}}
$$

SO

$$
\binom{1 / 3}{k} p^{2 k}=\frac{(-1)^{k-1}(3 k-4)(3 k-7) \cdots 5 \cdot 2}{3^{k}} \frac{p^{2 k}}{k!}
$$

and the exponent of p in k ! is certainly less than k. In fact it is less than $k\left(1 / p+1 / p^{2}+\cdots\right)=k /(p-1)$. Thus every term in the sum makes sense modulo p^{6} and we may in fact truncate after $k=6$. Thus

$$
\begin{aligned}
x & \equiv 1+p^{2} / 3-p^{4} / 3^{2}+5 p^{6} / 3^{4}-10 p^{8} / 3^{5}+22 p^{12} / 3^{6} \quad\left(\bmod p^{6}\right) \\
& \equiv 1+p^{2} / 3-p^{4} / 9 \quad\left(\bmod p^{6}\right)
\end{aligned}
$$

as $p>3$.
7. Let m and n be two positive integers.
(a) If $m=n q+r$ is division with remainder show that as polynomials $X^{m}-1=\left(X^{n}-1\right) Q(X)+X^{r}-1$ is division with remainder.
(b) Deduce that as polynomials $\left(X^{m}-1, X^{n}-1\right)=X^{(m, n)}-1$.

Proof. (a):

$$
\begin{aligned}
X^{m}-1 & =X^{n q+r}-1 \\
& =X^{n q+r}-X^{r}+X^{r}-1 \\
& =X^{r}\left(X^{n q}-1\right)+X^{r}-1 \\
& =X^{r}\left(X^{n}-1\right)\left(1+X^{n}+\cdots+X^{n(r-1)}\right)+X^{r}-1 \\
& =\left(X^{n}-1\right) Q(X)+X^{r}-1
\end{aligned}
$$

where $\operatorname{deg}\left(X^{r}-1\right)<\operatorname{deg}\left(X^{n}-1\right)$.
(b): Suppose $m \geq n$. We'll do by induction on n. The base case is $n=0$ in which case immediately $X^{m}-1 \mid X^{n}-1=0$ and so the gcd is $X^{m}-1=X^{(m, 0)}-1$. We know that $(m, n)=(n, r)$ from the Euclidean algorithm for \mathbb{Z}. Part (a) and the Euclidean algorithm for polynomials also implies that $\left(X^{m}-1, X^{n}-1\right)=\left(X^{n}-1, X^{r}-1\right)$. As $r<n$ we can apply the inductive hypothesis to deduce that $\left(X^{m}-1, X^{n}-1\right)=X^{(n, r)}-1=X^{(m, n)}-1$.
8. Show that

$$
\sum_{4 \mid k}\binom{781}{k} \equiv 1 \quad(\bmod 5)
$$

[Hint: What is a base 5 criterion for divisibility by 4?] (This is a special case of a general result of Hermite.)

Proof. In base a, a number is divisible by $a-1$ iff the sum of its base a digits are divisible by $a-1$. (Think divisibility by 9 in base 10.)
Since $781=11111_{(5)}$ we need to find

$$
S=\sum_{k=\overline{k_{4} k_{3} k_{2} k_{1} k_{0}(5), 4 \mid k_{0}+\cdots k_{4}}}\left(\frac{11111_{(5)}}{k_{4} k_{3} k_{2} k_{1} k_{0}(5)}\right) \equiv \sum_{k=\overline{k_{4} k_{3} k_{2} k_{1} k_{0}(5), 4 \mid k_{0}+\cdots k_{4}}}\binom{1}{k_{4}} \cdots\binom{1}{k_{0}}(\bmod 5)
$$

In the RHS the only way to get a nonzero term is if $k_{0}, k_{1}, k_{2}, k_{3}, k_{4}$ are either 0 or 1 or else the binomial factor in the product is 0 . Thus the sum $k_{0}+\cdots+k_{4}$ is either 0 or 4 . In the former case all digits of k are 0 while in the later four are 1 and one is 0 . There are 5 such possibilities. Therefore
$S \equiv\binom{1}{0}^{5}+\binom{11111}{01111}+\binom{11111}{10111}+\binom{11111}{11011}+\binom{11111}{11101}+\binom{11111}{11110} \equiv 1+5\binom{1}{1}^{4}\binom{1}{0} \equiv 1 \quad(\bmod 5)$

