Math 40520 Theory of Number Homework 6

Due Wednesday, 2015-10-14, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5 .

1. Let $p>3$ be a prime number and write $P=\{1,2, \ldots,(p-1) / 2\}$. Show that $x \in P$ is such that

$$
3 x \in 3 P \cap(-P)
$$

if and only if

$$
\left\lceil\frac{p+1}{6}\right\rceil \leq x \leq\left\lfloor\frac{p-1}{3}\right\rfloor
$$

and conclude that for $p>3$,

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1 & (\bmod 12) \\
-1 & \text { if } p \equiv \pm 5 & (\bmod 12)
\end{array}\right.
$$

2. Let $p>5$ be a prime number and write $P=\{1,2, \ldots,(p-1) / 2\}$. Show that $x \in P$ is such that

$$
5 x \in 5 P \cap(-P)
$$

if and only if

$$
\left\lceil\frac{p+1}{10}\right\rceil \leq x \leq\left\lfloor\frac{p-1}{5}\right\rfloor \text { or }\left\lceil\frac{3 p+1}{10}\right\rceil \leq x \leq\left\lfloor\frac{2 p-1}{5}\right\rfloor
$$

and conclude that for $p>5$,

$$
\left(\frac{5}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1, \pm 9 & (\bmod 20) \\
-1 & \text { if } p \equiv \pm 3, \pm 7 & (\bmod 20)
\end{array}\right.
$$

and remark that this is equivalent to the simpler statement

$$
\left(\frac{5}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1 & (\bmod 5) \\
-1 & \text { if } p \equiv \pm 2 & (\bmod 5)
\end{array}\right.
$$

3. Let $p>3$ be a prime number $\equiv 2(\bmod 3)$. Show that $p \mid x^{2}+3 y^{2}$ for integers x and y if and only if $p \mid x$ and $p \mid y$. [Hint: Use Problem 1. Similar to Exercise 7.10 on page 129.]
4. Let p be an odd prime. Suppose that $a \neq 0$ is a square $\bmod p$. Show that a is a square mod p^{n} for every $n \geq 1$.
5. Let a be an odd integer and $n \geq 3$ be an integer. Show that a is a square modulo 2^{n} if and only if $a \equiv 1(\bmod 8)$. [Hint: In class we showed that 17 is a square $\bmod 2^{n}$ and indeed $17 \equiv 1(\bmod 8)$.]
6. Let $p>2$ be a prime and $k, n \geq 1$ be two integers. Show that there are $\frac{\varphi\left(p^{n}\right)}{\left(k, \varphi\left(p^{n}\right)\right)}$ residues in $\mathbb{Z}_{p^{n}}^{\times}$ which are k-th powers.
7. Exercise 7.27 on page 141 .
8. (A simplification of Exercise 7.22 to not necessitate quadratic reciprocity) Suppose q and r are distinct primes such that $q \equiv r \equiv 1(\bmod 4)$ and $\left(\frac{q}{r}\right)=\left(\frac{r}{q}\right)=1$. Show that $\left(x^{2}-q\right)\left(x^{2}-r\right)\left(x^{2}-q r\right)=0$ has no rational solutions but has solutions modulo n for every positive integer n. [Hint: You might find Problem 5 useful.]
