Math 40520 Theory of Number Homework 6

Due Wednesday, 2015-10-14, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.

1. Let p > 3 be a prime number and write $P = \{1, 2, \dots, (p-1)/2\}$. Show that $x \in P$ is such that

$$3x \in 3P \cap (-P)$$

if and only if

$$\left\lceil \frac{p+1}{6} \right\rceil \le x \le \left\lfloor \frac{p-1}{3} \right\rfloor$$

and conclude that for p > 3,

$$\begin{pmatrix} 3\\ p \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{12} \\ -1 & \text{if } p \equiv \pm 5 \pmod{12} \end{cases}$$

2. Let p > 5 be a prime number and write $P = \{1, 2, \dots, (p-1)/2\}$. Show that $x \in P$ is such that

 $5x \in 5P \cap (-P)$

if and only if

$$\left\lceil \frac{p+1}{10} \right\rceil \le x \le \left\lfloor \frac{p-1}{5} \right\rfloor \text{ or } \left\lceil \frac{3p+1}{10} \right\rceil \le x \le \left\lfloor \frac{2p-1}{5} \right\rfloor$$

and conclude that for p > 5,

$$\begin{pmatrix} \frac{5}{p} \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv \pm 1, \pm 9 \pmod{20} \\ -1 & \text{if } p \equiv \pm 3, \pm 7 \pmod{20} \end{cases}$$

and remark that this is equivalent to the simpler statement

$$\begin{pmatrix} 5\\ p \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{5} \\ -1 & \text{if } p \equiv \pm 2 \pmod{5} \end{cases}$$

- 3. Let p > 3 be a prime number $\equiv 2 \pmod{3}$. Show that $p \mid x^2 + 3y^2$ for integers x and y if and only if $p \mid x$ and $p \mid y$. [Hint: Use Problem 1. Similar to Exercise 7.10 on page 129.]
- 4. Let p be an odd prime. Suppose that $a \neq 0$ is a square mod p. Show that a is a square mod p^n for every $n \geq 1$.
- 5. Let a be an odd integer and $n \ge 3$ be an integer. Show that a is a square modulo 2^n if and only if $a \equiv 1 \pmod{8}$. [Hint: In class we showed that 17 is a square mod 2^n and indeed $17 \equiv 1 \pmod{8}$.]

- 6. Let p > 2 be a prime and $k, n \ge 1$ be two integers. Show that there are $\frac{\varphi(p^n)}{(k,\varphi(p^n))}$ residues in $\mathbb{Z}_{p^n}^{\times}$ which are k-th powers.
- 7. Exercise 7.27 on page 141.
- 8. (A simplification of Exercise 7.22 to not necessitate quadratic reciprocity) Suppose q and r are distinct primes such that $q \equiv r \equiv 1 \pmod{4}$ and $\left(\frac{q}{r}\right) = \left(\frac{r}{q}\right) = 1$. Show that $(x^2 q)(x^2 r)(x^2 qr) = 0$ has no rational solutions but has solutions modulo n for every positive integer n. [Hint: You might find Problem 5 useful.]