Math 40520 Theory of Number
Homework 6

Due Wednesday, 2015-10-07, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.
1. Let p > 3 be a prime number and write P = {1,2,...,(p — 1)/2}. Show that = € P is such that

3z € 3PN (-P)
22 |o5

3 _ J1 ifp=41 (mod 12)

p) |-1 ifp=+5 (mod 12)
Proof. Note that if © < (p — 1)/3 then 3z < p — 1 so 3x is its residue mod p. When z > (p — 1)/3
then the residue of 3z mod p is 3z — p as then 0 < 3z — p < p given that 3z < 3(p —1)/2 < p. In fact
3x —p < (p+1)/2 so for such z, 3z ¢ —P. Therefore we only need to count those z < (p — 1)/3 such

that 3x € —P={(p+1)/2,...,p— 1}, ie., (p+1)/3 <3z < p—1. This is equivalent to the condition
in the problem.

if and only if

and conclude that for p > 3,

3 .
Gauss’ Lemma implies that (—) = (fl)ljp =Pl and the previous result shows that the exponent
p
1

equals the number of z such that {%1 <z< {%J, namely

p—1 p+1
Ny=|—| - |— | +1
=5
We only need to determine whether this number is even or odd. Note that adding a multiple of 12 to
p doesn’t change the parity of this number so it suffices to determine its parity for the residues of p

mod 12. As p > 3 its residue mod 12 is 1,5,7,11 and we just check that the values we get are N7 = 0,
N5 =1, N; =1 and Ny; = 2 and the result follows. O

2. Let p > 5 be a prime number and write P = {1,2,...,(p — 1)/2}. Show that « € P is such that

52 € 5PN (—P)

p+1 p—1 3p+1 2p—1
— | <z < <zr<
| == [ o [ == [

if and only if




and conclude that for p > 5,

(5) {1 ifp=+1,49 (mod 20)
D -1 ifp=43,4£7 (mod 20)

and remark that this is equivalent to the simpler statement
(5) 1 if p=+1 (mod 5)
p) |-1 ifp=+2 (mod5)
Proof. If x < (p—1)/5 then the residue of 5z is 5z. if (p—1)/5 < & < (2p—1)/5 then the residue of 5z
is 5z —p as then 0 < 5z —p < p—1. Finally, if (2p—1)/5 < = < (p—1)/2 then the residue of 5z mod p is
5xz—2p. Note that in that case 0 < 5x—2p < 5(p—1)/2—2p < (p+1)/2 so the only way 5z mod p € —P
isif x < (p—1)/5 and the integer 5z > (p+ 1)/2 orif (p —1)/5 < = < (2p — 1)/5 and the integer

5z —p > (p+1)/2. These are equivalent to (p+1)/10 <z < (p—1)/50r (3p+1)/10 < x < (2p—1)/5.
This yields the first part of the problem.

For the second part, again Gauss’ Lemma implies that <§> = (=1)PPPNEPI = (—1)Ne where
b

2p —1 3p+1 p—1 p+1
N, = — 1 — | - | = 1
Sl el e el
Again the parity doesn’t change if we add multiples of 20 to p and so it suffices to verify the parity
of N, for the residues p mod 20 which can be 1,3,7,9,11,13,17,19. The values for these residues are

Ny =0, N3 =1, N; =1, Ng =2, N;; =2, Ni3 =3, Ni7 = 3, N1ig = 4 and the result follows mod 20.
The result mod 5 is immediate as +1,+9 mod 20 is equivalent to -1 mod 5. O]

. Let p > 3 be a prime number = 2 (mod 3). Show that p | 22 + 3y? for integers x and y if and only if
p |z and p |y. [Hint: Use Problem 1.]

Proof. Suppose p | 22 + 3y%. As p > 3, p | x if and only if p | y. Suppose now that x,y € Zy. Then
22+ 3y? =0 (mod p) implies —3 = (z/y)? (mod p) so —3 is a square mod p. But then

-
@-6)0

Since p = 2 (mod 3) it follows that p = 5,11 (mod 12). If p = 5 (mod 12) it follows that p = 1
-1 3 -3
(mod 4) so <?> = 1 while the first problem implies that <5> = —1. We deduce that <?> = -1,

and we compute

-1
a contradiction. If p = 11 (mod 12) it follows that p = 3 (mod 4) so <—) = —1 whereas the first
p

3
problem implies that (—) = 1 again yielding the contradiction <—> =—1.
p p

O

. Let p be an odd prime. Suppose that a # 0 is a square mod p. Show that a is a square mod p™ for
every n > 1.



Proof. If P(x) = 22 —a =0 (mod p) has a root o then o # 0 (mod p) and so P'(a) = 2a # 0 (mod p)
(as p is odd). Then Hensel’s lemma implies that P(z) =0 (mod p") always has roots. O

. Let a be an odd integer and n > 3 be an integer. Show that a is a square modulo 2™ if and only if
a =1 (mod 8). [Hint: In class we showed that 17 is a square mod 2" and indeed 17 =1 (mod 8).]

Proof. As 82" if 22 = a (mod 2") we get that 22 = a (mod 8). The only odd square modulo 8 is 1,
by inspection, as (+1)% = (£3)? =1 (mod 8). Reciprocally, suppose that a = 1+8k. We need to solve
the congruence z2 = 1 + 8k (mod 2"). A solution would necessarily be odd and writing = 2y + 1

this is equivalent to
4> +4y+1=1+8k (mod 2")

which is equivalent to

v +y—2k=0 (mod2"?)
It suffices to show that this equation has roots for all m = n — 2 > 1. Mod 2 the equation has the
root y = 0. Hensel’s lemma applies as Q'(y) = 2y + 1 = 1 (mod 2) doesn’t vanish and so Q(y) =0
(mod 2™) always has roots. O

n
. Let p > 2 be a prime and k,n > 1 be two integers. Show that there are w residues in Z;n

(k, o(p™))

which are k-th powers.

Proof. As p is odd, Z;n is cyclic with some primitive root g. Then we need to count those a = ¢g” such
that the equation (¢°)* = ¢” (mod p™) has a solution with 0 < s < ¢(p"). As g has order p(p") this
is equivalent to ks = r (mod ¢(p™)). This equation has a solution with s integral if and only if there
exists an integer M such that

ks =1+ o(p")M

Immediately if such s and M exist then
d=(k,o(p")) [ r=ks —(p")M

Suppose that d | r. Then k/d and ¢(p™)/d are coprime integers whereas r/d is an integer. Therefore
the equation

(k/d)s =r/d (mod p(p")/d)
has a solution (since k/d is invertible modulo ¢(p™)/d). We can therefore find an integer M such that

(k/d)s = r/d+ o(p")/d- M

which immediately yields a solution to the congruence ks = r (mod ¢(p™)).

Therefore we need to count the r such that 0 < r < p(p™) such that d | ». Then r is of the form r = du
where 0 < u < ¢(p™)/d and there are exactly ¢(p™)/d such integers. O

. Exercise 7.27 on page 141.

Proof. Recall from class that exactly half the residues in Z) are squares. Thus half the legendre
symbols are 1, the other half being —1, which implies the total sum is 0. The second part we did in
class. Indeed, the quadratic residues are the even powers of a primitive element so

p—3 _ g -1

=0
9? -1

Za=1+92+g4+-~-+g
acQyp

as g2 — 1 # 0 since p > 3. O



8. (A simplification of Exercise 7.22 to not necessitate quadratic reciprocity) Suppose ¢ and r are distinct
primes such that ¢ = r = 1 (mod 4) and (2) = <t> = 1. Show that (2% — ¢)(z? —r)(22 —gqr) =0
r q

has no rational solutions but has solutions modulo n for every positive integer n. [Hint: You might
find Problem 5 useful.]

Proof. The equation has roots &,/q, £+/r, and £,/gr which are not rational. By the CRT it is enough
to show that the equation has roots mod p* for all primes p and k > 1.

Suppose p ¢ {2,¢,7}. Then one of (Q> (f) (ﬂ) = (9> (f> is 1 (as (—1) - (—1) = 1). Thus one of

p b p b/ \p
the equations 22 — ¢ = 0, 22 — r = 0 and 22 — ¢r = 0 has solutions mod p. Any solution = = zy will
then be # 0 (mod p) as that would imply that g, r or gr is divisible by p. Moreover, as p # 2, Hensel’s
lemma implies the existence of a root of the appropriate quadratic modulo p* for all k£ and therefore a
solution of P(z) = (2% — ¢)(2? — r)(2% — ¢r) =0 (mod p*).

If p = q then the above argument yields roots of 2 —r = 0 (mod ¢*) for all k because r is a square
mod ¢ and we can still apply Hensel’s lemma as r # ¢. A similar argument works if p = r.

Finally, we treat the case p = 2. We need solutions of P(X) = 0 (mod 2*) for all k large enough
and let’s suppose that k& > 3. Problem 5 guarantees a root of 22> —a = 0 (mod 2¥) as long as a = 1
(mod 8). If g or 7 is = 1 (mod 8) then we have a root mod 2 of 22 — q or 22 — 7. Otherwise ¢,r =5
(mod 8). But then ¢gr = 52 =1 (mod 8) and so 22 — ¢r has roots mod 2. O



