
Math 40520 Theory of Number

Homework 6

Due Wednesday, 2015-10-07, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.

1. Let p > 3 be a prime number and write P = {1, 2, . . . , (p− 1)/2}. Show that x ∈ P is such that

3x ∈ 3P ∩ (−P )

if and only if ⌈
p+ 1

6

⌉
≤ x ≤

⌊
p− 1

3

⌋
and conclude that for p > 3, (

3

p

)
=

{
1 if p ≡ ±1 (mod 12)

−1 if p ≡ ±5 (mod 12)

Proof. Note that if x ≤ (p − 1)/3 then 3x ≤ p − 1 so 3x is its residue mod p. When x > (p − 1)/3
then the residue of 3x mod p is 3x− p as then 0 ≤ 3x− p < p given that 3x < 3(p− 1)/2 < p. In fact
3x− p < (p+ 1)/2 so for such x, 3x /∈ −P . Therefore we only need to count those x ≤ (p− 1)/3 such
that 3x ∈ −P = {(p+ 1)/2, . . . , p− 1}, i.e., (p+ 1)/3 ≤ 3x ≤ p− 1. This is equivalent to the condition
in the problem.

Gauss’ Lemma implies that

(
3

p

)
= (−1)|3P∩−P | and the previous result shows that the exponent

equals the number of x such that
⌈
p+1
6

⌉
≤ x ≤

⌊
p−1
3

⌋
, namely

Np =

⌊
p− 1

3

⌋
−
⌈
p+ 1

6

⌉
+ 1

We only need to determine whether this number is even or odd. Note that adding a multiple of 12 to
p doesn’t change the parity of this number so it suffices to determine its parity for the residues of p
mod 12. As p > 3 its residue mod 12 is 1, 5, 7, 11 and we just check that the values we get are N1 = 0,
N5 = 1, N7 = 1 and N11 = 2 and the result follows.

2. Let p > 5 be a prime number and write P = {1, 2, . . . , (p− 1)/2}. Show that x ∈ P is such that

5x ∈ 5P ∩ (−P )

if and only if ⌈
p+ 1

10

⌉
≤ x ≤

⌊
p− 1

5

⌋
or

⌈
3p+ 1

10

⌉
≤ x ≤

⌊
2p− 1

5

⌋

1



and conclude that for p > 5, (
5

p

)
=

{
1 if p ≡ ±1,±9 (mod 20)

−1 if p ≡ ±3,±7 (mod 20)

and remark that this is equivalent to the simpler statement(
5

p

)
=

{
1 if p ≡ ±1 (mod 5)

−1 if p ≡ ±2 (mod 5)

Proof. If x ≤ (p−1)/5 then the residue of 5x is 5x. if (p−1)/5 < x < (2p−1)/5 then the residue of 5x
is 5x−p as then 0 ≤ 5x−p ≤ p−1. Finally, if (2p−1)/5 < x ≤ (p−1)/2 then the residue of 5x mod p is
5x−2p. Note that in that case 0 ≤ 5x−2p ≤ 5(p−1)/2−2p < (p+1)/2 so the only way 5x mod p ∈ −P
is if x ≤ (p − 1)/5 and the integer 5x ≥ (p + 1)/2 or if (p − 1)/5 < x ≤ (2p − 1)/5 and the integer
5x−p ≥ (p+ 1)/2. These are equivalent to (p+ 1)/10 ≤ x ≤ (p−1)/5 or (3p+ 1)/10 ≤ x ≤ (2p−1)/5.
This yields the first part of the problem.

For the second part, again Gauss’ Lemma implies that

(
5

p

)
= (−1)|5P∩(−P )| = (−1)Np where

Np =

⌊
2p− 1

5

⌋
−
⌈

3p+ 1

10

⌉
+ 1 +

⌊
p− 1

5

⌋
−
⌈
p+ 1

10

⌉
+ 1

Again the parity doesn’t change if we add multiples of 20 to p and so it suffices to verify the parity
of Np for the residues p mod 20 which can be 1, 3, 7, 9, 11, 13, 17, 19. The values for these residues are
N1 = 0, N3 = 1, N7 = 1, N9 = 2, N11 = 2, N13 = 3, N17 = 3, N19 = 4 and the result follows mod 20.
The result mod 5 is immediate as ±1,±9 mod 20 is equivalent to ±1 mod 5.

3. Let p > 3 be a prime number ≡ 2 (mod 3). Show that p | x2 + 3y2 for integers x and y if and only if
p | x and p | y. [Hint: Use Problem 1.]

Proof. Suppose p | x2 + 3y2. As p > 3, p | x if and only if p | y. Suppose now that x, y ∈ Z×p . Then
x2 + 3y2 ≡ 0 (mod p) implies −3 = (x/y)2 (mod p) so −3 is a square mod p. But then(

−3

p

)
= 1

and we compute (
−3

p

)
=

(
−1

p

)(
3

p

)
Since p ≡ 2 (mod 3) it follows that p ≡ 5, 11 (mod 12). If p ≡ 5 (mod 12) it follows that p ≡ 1

(mod 4) so

(
−1

p

)
= 1 while the first problem implies that

(
3

p

)
= −1. We deduce that

(
−3

p

)
= −1,

a contradiction. If p ≡ 11 (mod 12) it follows that p ≡ 3 (mod 4) so

(
−1

p

)
= −1 whereas the first

problem implies that

(
3

p

)
= 1 again yielding the contradiction

(
−3

p

)
= −1.

4. Let p be an odd prime. Suppose that a 6= 0 is a square mod p. Show that a is a square mod pn for
every n ≥ 1.

2



Proof. If P (x) = x2−a ≡ 0 (mod p) has a root α then α 6≡ 0 (mod p) and so P ′(α) = 2α 6≡ 0 (mod p)
(as p is odd). Then Hensel’s lemma implies that P (x) ≡ 0 (mod pn) always has roots.

5. Let a be an odd integer and n ≥ 3 be an integer. Show that a is a square modulo 2n if and only if
a ≡ 1 (mod 8). [Hint: In class we showed that 17 is a square mod 2n and indeed 17 ≡ 1 (mod 8).]

Proof. As 8 | 2n if x2 ≡ a (mod 2n) we get that x2 ≡ a (mod 8). The only odd square modulo 8 is 1,
by inspection, as (±1)2 ≡ (±3)2 ≡ 1 (mod 8). Reciprocally, suppose that a = 1+8k. We need to solve
the congruence x2 ≡ 1 + 8k (mod 2n). A solution would necessarily be odd and writing x = 2y + 1
this is equivalent to

4y2 + 4y + 1 ≡ 1 + 8k (mod 2n)

which is equivalent to
y2 + y − 2k ≡ 0 (mod 2n−2)

It suffices to show that this equation has roots for all m = n − 2 ≥ 1. Mod 2 the equation has the
root y = 0. Hensel’s lemma applies as Q′(y) = 2y + 1 = 1 (mod 2) doesn’t vanish and so Q(y) ≡ 0
(mod 2m) always has roots.

6. Let p > 2 be a prime and k, n ≥ 1 be two integers. Show that there are
ϕ(pn)

(k, ϕ(pn))
residues in Z×pn

which are k-th powers.

Proof. As p is odd, Z×pn is cyclic with some primitive root g. Then we need to count those a = gr such

that the equation (gs)k ≡ gr (mod pn) has a solution with 0 ≤ s < ϕ(pn). As g has order ϕ(pn) this
is equivalent to ks ≡ r (mod ϕ(pn)). This equation has a solution with s integral if and only if there
exists an integer M such that

ks = r + ϕ(pn)M

Immediately if such s and M exist then

d = (k, ϕ(pn)) | r = ks− ϕ(pn)M

Suppose that d | r. Then k/d and ϕ(pn)/d are coprime integers whereas r/d is an integer. Therefore
the equation

(k/d)s ≡ r/d (mod ϕ(pn)/d)

has a solution (since k/d is invertible modulo ϕ(pn)/d). We can therefore find an integer M such that

(k/d)s = r/d+ ϕ(pn)/d ·M

which immediately yields a solution to the congruence ks ≡ r (mod ϕ(pn)).

Therefore we need to count the r such that 0 ≤ r < ϕ(pn) such that d | r. Then r is of the form r = du
where 0 ≤ u < ϕ(pn)/d and there are exactly ϕ(pn)/d such integers.

7. Exercise 7.27 on page 141.

Proof. Recall from class that exactly half the residues in Z×p are squares. Thus half the legendre
symbols are 1, the other half being −1, which implies the total sum is 0. The second part we did in
class. Indeed, the quadratic residues are the even powers of a primitive element so∑

a∈Qp

a = 1 + g2 + g4 + · · ·+ gp−3 =
gp−1 − 1

g2 − 1
= 0

as g2 − 1 6= 0 since p > 3.
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8. (A simplification of Exercise 7.22 to not necessitate quadratic reciprocity) Suppose q and r are distinct

primes such that q ≡ r ≡ 1 (mod 4) and

(
q

r

)
=

(
r

q

)
= 1. Show that (x2 − q)(x2 − r)(x2 − qr) = 0

has no rational solutions but has solutions modulo n for every positive integer n. [Hint: You might
find Problem 5 useful.]

Proof. The equation has roots ±√q,±
√
r, and ±√qr which are not rational. By the CRT it is enough

to show that the equation has roots mod pk for all primes p and k ≥ 1.

Suppose p /∈ {2, q, r}. Then one of

(
q

p

)
,

(
r

p

)
,

(
qr

p

)
=

(
q

p

)(
r

p

)
is 1 (as (−1) · (−1) = 1). Thus one of

the equations x2 − q = 0, x2 − r = 0 and x2 − qr = 0 has solutions mod p. Any solution x = x0 will
then be 6≡ 0 (mod p) as that would imply that q, r or qr is divisible by p. Moreover, as p 6= 2, Hensel’s
lemma implies the existence of a root of the appropriate quadratic modulo pk for all k and therefore a
solution of P (x) = (x2 − q)(x2 − r)(x2 − qr) ≡ 0 (mod pk).

If p = q then the above argument yields roots of x2 − r ≡ 0 (mod qk) for all k because r is a square
mod q and we can still apply Hensel’s lemma as r 6= q. A similar argument works if p = r.

Finally, we treat the case p = 2. We need solutions of P (X) ≡ 0 (mod 2k) for all k large enough
and let’s suppose that k ≥ 3. Problem 5 guarantees a root of x2 − a ≡ 0 (mod 2k) as long as a ≡ 1
(mod 8). If q or r is ≡ 1 (mod 8) then we have a root mod 2k of x2 − q or x2 − r. Otherwise q, r ≡ 5
(mod 8). But then qr ≡ 52 ≡ 1 (mod 8) and so x2 − qr has roots mod 2k.
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