Math 40520 Theory of Number Homework 6

Due Wednesday, 2015-10-07, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5 .

1. Let $p>3$ be a prime number and write $P=\{1,2, \ldots,(p-1) / 2\}$. Show that $x \in P$ is such that

$$
3 x \in 3 P \cap(-P)
$$

if and only if

$$
\left\lceil\frac{p+1}{6}\right\rceil \leq x \leq\left\lfloor\frac{p-1}{3}\right\rfloor
$$

and conclude that for $p>3$,

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1 & (\bmod 12) \\
-1 & \text { if } p \equiv \pm 5 & (\bmod 12)
\end{array}\right.
$$

Proof. Note that if $x \leq(p-1) / 3$ then $3 x \leq p-1$ so $3 x$ is its residue $\bmod p$. When $x>(p-1) / 3$ then the residue of $3 x \bmod p$ is $3 x-p$ as then $0 \leq 3 x-p<p$ given that $3 x<3(p-1) / 2<p$. In fact $3 x-p<(p+1) / 2$ so for such $x, 3 x \notin-P$. Therefore we only need to count those $x \leq(p-1) / 3$ such that $3 x \in-P=\{(p+1) / 2, \ldots, p-1\}$, i.e., $(p+1) / 3 \leq 3 x \leq p-1$. This is equivalent to the condition in the problem.
Gauss' Lemma implies that $\left(\frac{3}{p}\right)=(-1)^{|3 P \cap-P|}$ and the previous result shows that the exponent equals the number of x such that $\left\lceil\frac{p+1}{6}\right\rceil \leq x \leq\left\lfloor\frac{p-1}{3}\right\rfloor$, namely

$$
N_{p}=\left\lfloor\frac{p-1}{3}\right\rfloor-\left\lceil\frac{p+1}{6}\right\rceil+1
$$

We only need to determine whether this number is even or odd. Note that adding a multiple of 12 to p doesn't change the parity of this number so it suffices to determine its parity for the residues of p $\bmod 12$. As $p>3$ its residue $\bmod 12$ is $1,5,7,11$ and we just check that the values we get are $N_{1}=0$, $N_{5}=1, N_{7}=1$ and $N_{11}=2$ and the result follows.
2. Let $p>5$ be a prime number and write $P=\{1,2, \ldots,(p-1) / 2\}$. Show that $x \in P$ is such that

$$
5 x \in 5 P \cap(-P)
$$

if and only if

$$
\left\lceil\frac{p+1}{10}\right\rceil \leq x \leq\left\lfloor\frac{p-1}{5}\right\rfloor \text { or }\left\lceil\frac{3 p+1}{10}\right\rceil \leq x \leq\left\lfloor\frac{2 p-1}{5}\right\rfloor
$$

and conclude that for $p>5$,

$$
\left(\frac{5}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1, \pm 9 & (\bmod 20) \\
-1 & \text { if } p \equiv \pm 3, \pm 7 & (\bmod 20)
\end{array}\right.
$$

and remark that this is equivalent to the simpler statement

$$
\left(\frac{5}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1 & (\bmod 5) \\
-1 & \text { if } p \equiv \pm 2 & (\bmod 5)
\end{array}\right.
$$

Proof. If $x \leq(p-1) / 5$ then the residue of $5 x$ is $5 x$. if $(p-1) / 5<x<(2 p-1) / 5$ then the residue of $5 x$ is $5 x-p$ as then $0 \leq 5 x-p \leq p-1$. Finally, if $(2 p-1) / 5<x \leq(p-1) / 2$ then the residue of $5 x$ mod p is $5 x-2 p$. Note that in that case $0 \leq 5 x-2 p \leq 5(p-1) / 2-2 p<(p+1) / 2$ so the only way $5 x \bmod p \in-P$ is if $x \leq(p-1) / 5$ and the integer $5 x \geq(p+1) / 2$ or if $(p-1) / 5<x \leq(2 p-1) / 5$ and the integer $5 x-p \geq(p+1) / 2$. These are equivalent to $(p+1) / 10 \leq x \leq(p-1) / 5$ or $(3 p+1) / 10 \leq x \leq(2 p-1) / 5$. This yields the first part of the problem.
For the second part, again Gauss' Lemma implies that $\left(\frac{5}{p}\right)=(-1)^{|5 P \cap(-P)|}=(-1)^{N_{p}}$ where

$$
N_{p}=\left\lfloor\frac{2 p-1}{5}\right\rfloor-\left\lceil\frac{3 p+1}{10}\right\rceil+1+\left\lfloor\frac{p-1}{5}\right\rfloor-\left\lceil\frac{p+1}{10}\right\rceil+1
$$

Again the parity doesn't change if we add multiples of 20 to p and so it suffices to verify the parity of N_{p} for the residues $p \bmod 20$ which can be $1,3,7,9,11,13,17,19$. The values for these residues are $N_{1}=0, N_{3}=1, N_{7}=1, N_{9}=2, N_{11}=2, N_{13}=3, N_{17}=3, N_{19}=4$ and the result follows mod 20. The result $\bmod 5$ is immediate as $\pm 1, \pm 9 \bmod 20$ is equivalent to $\pm 1 \bmod 5$.
3. Let $p>3$ be a prime number $\equiv 2(\bmod 3)$. Show that $p \mid x^{2}+3 y^{2}$ for integers x and y if and only if $p \mid x$ and $p \mid y$. [Hint: Use Problem 1.]

Proof. Suppose $p \mid x^{2}+3 y^{2}$. As $p>3, p \mid x$ if and only if $p \mid y$. Suppose now that $x, y \in \mathbb{Z}_{p}^{\times}$. Then $x^{2}+3 y^{2} \equiv 0(\bmod p)$ implies $-3=(x / y)^{2}(\bmod p)$ so -3 is a square $\bmod p$. But then

$$
\left(\frac{-3}{p}\right)=1
$$

and we compute

$$
\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)
$$

Since $p \equiv 2(\bmod 3)$ it follows that $p \equiv 5,11(\bmod 12)$. If $p \equiv 5(\bmod 12)$ it follows that $p \equiv 1$ $(\bmod 4)$ so $\left(\frac{-1}{p}\right)=1$ while the first problem implies that $\left(\frac{3}{p}\right)=-1$. We deduce that $\left(\frac{-3}{p}\right)=-1$, a contradiction. If $p \equiv 11(\bmod 12)$ it follows that $p \equiv 3(\bmod 4)$ so $\left(\frac{-1}{p}\right)=-1$ whereas the first problem implies that $\left(\frac{3}{p}\right)=1$ again yielding the contradiction $\left(\frac{-3}{p}\right)=-1$.
4. Let p be an odd prime. Suppose that $a \neq 0$ is a square $\bmod p$. Show that a is a square mod p^{n} for every $n \geq 1$.

Proof. If $P(x)=x^{2}-a \equiv 0(\bmod p)$ has a root α then $\alpha \not \equiv 0(\bmod p)$ and so $P^{\prime}(\alpha)=2 \alpha \not \equiv 0(\bmod p)$ (as p is odd). Then Hensel's lemma implies that $P(x) \equiv 0\left(\bmod p^{n}\right)$ always has roots.
5. Let a be an odd integer and $n \geq 3$ be an integer. Show that a is a square modulo 2^{n} if and only if $a \equiv 1(\bmod 8)$. [Hint: In class we showed that 17 is a square $\bmod 2^{n}$ and indeed $17 \equiv 1(\bmod 8)$.]

Proof. As $8 \mid 2^{n}$ if $x^{2} \equiv a\left(\bmod 2^{n}\right)$ we get that $x^{2} \equiv a(\bmod 8)$. The only odd square modulo 8 is 1 , by inspection, as $(\pm 1)^{2} \equiv(\pm 3)^{2} \equiv 1(\bmod 8)$. Reciprocally, suppose that $a=1+8 k$. We need to solve the congruence $x^{2} \equiv 1+8 k\left(\bmod 2^{n}\right)$. A solution would necessarily be odd and writing $x=2 y+1$ this is equivalent to

$$
4 y^{2}+4 y+1 \equiv 1+8 k \quad\left(\bmod 2^{n}\right)
$$

which is equivalent to

$$
y^{2}+y-2 k \equiv 0 \quad\left(\bmod 2^{n-2}\right)
$$

It suffices to show that this equation has roots for all $m=n-2 \geq 1$. Mod 2 the equation has the root $y=0$. Hensel's lemma applies as $Q^{\prime}(y)=2 y+1=1(\bmod 2)$ doesn't vanish and so $Q(y) \equiv 0$ $\left(\bmod 2^{m}\right)$ always has roots.
6. Let $p>2$ be a prime and $k, n \geq 1$ be two integers. Show that there are $\frac{\varphi\left(p^{n}\right)}{\left(k, \varphi\left(p^{n}\right)\right)}$ residues in $\mathbb{Z}_{p^{n}}^{\times}$ which are k-th powers.

Proof. As p is odd, $\mathbb{Z}_{p^{n}}^{\times}$is cyclic with some primitive root g. Then we need to count those $a=g^{r}$ such that the equation $\left(g^{s}\right)^{k} \equiv g^{r}\left(\bmod p^{n}\right)$ has a solution with $0 \leq s<\varphi\left(p^{n}\right)$. As g has order $\varphi\left(p^{n}\right)$ this is equivalent to $k s \equiv r\left(\bmod \varphi\left(p^{n}\right)\right)$. This equation has a solution with s integral if and only if there exists an integer M such that

$$
k s=r+\varphi\left(p^{n}\right) M
$$

Immediately if such s and M exist then

$$
d=\left(k, \varphi\left(p^{n}\right)\right) \mid r=k s-\varphi\left(p^{n}\right) M
$$

Suppose that $d \mid r$. Then k / d and $\varphi\left(p^{n}\right) / d$ are coprime integers whereas r / d is an integer. Therefore the equation

$$
(k / d) s \equiv r / d \quad\left(\bmod \varphi\left(p^{n}\right) / d\right)
$$

has a solution (since k / d is invertible modulo $\varphi\left(p^{n}\right) / d$). We can therefore find an integer M such that

$$
(k / d) s=r / d+\varphi\left(p^{n}\right) / d \cdot M
$$

which immediately yields a solution to the congruence $k s \equiv r\left(\bmod \varphi\left(p^{n}\right)\right)$.
Therefore we need to count the r such that $0 \leq r<\varphi\left(p^{n}\right)$ such that $d \mid r$. Then r is of the form $r=d u$ where $0 \leq u<\varphi\left(p^{n}\right) / d$ and there are exactly $\varphi\left(p^{n}\right) / d$ such integers.
7. Exercise 7.27 on page 141 .

Proof. Recall from class that exactly half the residues in \mathbb{Z}_{p}^{\times}are squares. Thus half the legendre symbols are 1 , the other half being -1 , which implies the total sum is 0 . The second part we did in class. Indeed, the quadratic residues are the even powers of a primitive element so

$$
\sum_{a \in Q_{p}} a=1+g^{2}+g^{4}+\cdots+g^{p-3}=\frac{g^{p-1}-1}{g^{2}-1}=0
$$

as $g^{2}-1 \neq 0$ since $p>3$.
8. (A simplification of Exercise 7.22 to not necessitate quadratic reciprocity) Suppose q and r are distinct primes such that $q \equiv r \equiv 1(\bmod 4)$ and $\left(\frac{q}{r}\right)=\left(\frac{r}{q}\right)=1$. Show that $\left(x^{2}-q\right)\left(x^{2}-r\right)\left(x^{2}-q r\right)=0$ has no rational solutions but has solutions modulo n for every positive integer n. [Hint: You might find Problem 5 useful.]

Proof. The equation has roots $\pm \sqrt{q}, \pm \sqrt{r}$, and $\pm \sqrt{q r}$ which are not rational. By the CRT it is enough to show that the equation has roots $\bmod p^{k}$ for all primes p and $k \geq 1$.
Suppose $p \notin\{2, q, r\}$. Then one of $\left(\frac{q}{p}\right),\left(\frac{r}{p}\right),\left(\frac{q r}{p}\right)=\left(\frac{q}{p}\right)\left(\frac{r}{p}\right)$ is 1 (as $\left.(-1) \cdot(-1)=1\right)$. Thus one of the equations $x^{2}-q=0, x^{2}-r=0$ and $x^{2}-q r=0$ has solutions $\bmod p$. Any solution $x=x_{0}$ will then be $\not \equiv 0(\bmod p)$ as that would imply that q, r or $q r$ is divisible by p. Moreover, as $p \neq 2$, Hensel's lemma implies the existence of a root of the appropriate quadratic modulo p^{k} for all k and therefore a solution of $P(x)=\left(x^{2}-q\right)\left(x^{2}-r\right)\left(x^{2}-q r\right) \equiv 0\left(\bmod p^{k}\right)$.
If $p=q$ then the above argument yields roots of $x^{2}-r \equiv 0\left(\bmod q^{k}\right)$ for all k because r is a square $\bmod q$ and we can still apply Hensel's lemma as $r \neq q$. A similar argument works if $p=r$.
Finally, we treat the case $p=2$. We need solutions of $P(X) \equiv 0\left(\bmod 2^{k}\right)$ for all k large enough and let's suppose that $k \geq 3$. Problem 5 guarantees a root of $x^{2}-a \equiv 0\left(\bmod 2^{k}\right)$ as long as $a \equiv 1$ $(\bmod 8)$. If q or r is $\equiv 1(\bmod 8)$ then we have a root $\bmod 2^{k}$ of $x^{2}-q$ or $x^{2}-r$. Otherwise $q, r \equiv 5$ $(\bmod 8)$. But then $q r \equiv 5^{2} \equiv 1(\bmod 8)$ and so $x^{2}-q r$ has roots $\bmod 2^{k}$.

