Math 40520 Theory of Number Homework 7

Due Wednesday, 2015-11-11, in class

1. Exercise 2.17 on page 35. [Hint: Mod 3.]
2. (Restatement of first part of Exercise 4.6 on page 74) Show that if p is a prime and $n=2^{p}-1$ then $2^{n} \equiv 2(\bmod n)$. (This would be a consequence of Fermat's little theorem if n were a prime and the point of the exercise is to show this always, whether or not n is a prime.) [Hint: Use the fact that, since p is a prime, $2^{p} \equiv 2(\bmod p)$.]
3. (Restatement of second part of Exercise 4.6 on page 74) Show that if k is a positive integer and $n=2^{2^{k}}+1$ then $2^{n} \equiv 2(\bmod n)$. (This would be a consequence of Fermat's little theorem if n were a prime and the point of the exercise is to show this always, whether or not n is a prime.)
4. Suppose $p>q$ are two primes. Show that

$$
q^{p q} \not \equiv q \quad(\bmod p q)
$$

5. Show that an integer n is a prime if and only if

$$
(X+a)^{n} \equiv X^{n}+a \quad(\bmod n)
$$

for all integers a. [Hint: If p is the smallest prime factor of n but $p \neq n$ show that n cannot possibly divide $\binom{n}{p}$.]

