Math 40520 Theory of Number Homework 7

Due Wednesday, 2015-11-11, in class

1. Exercise 2.17 on page 35. [Hint: Mod 3.]

Proof. If $p=3$ then $p^{2}+2=11$ is also a prime. If $p \neq 3$ then $p^{2} \equiv 1(\bmod 3)$ so $3 \mid p^{2}+2$ and therefore $p^{2}+2>3$ is not a prime.
2. (Restatement of first part of Exercise 4.6 on page 74) Show that if p is a prime and $n=2^{p}-1$ then $2^{n} \equiv 2(\bmod n)$. (This would be a consequence of Fermat's little theorem if n were a prime and the point of the exercise is to show this always, whether or not n is a prime.) [Hint: Use the fact that, since p is a prime, $2^{p} \equiv 2(\bmod p)$.]

Proof. It suffices to show that $2^{n-1} \equiv 1(\bmod n)$. From Fermat's little theorem $2^{p} \equiv 2(\bmod p)$ and so $2^{p}-2=p m$ for some integer m. Thus

$$
2^{n-1}-1=2^{2^{p}-2}-1=2^{m p}-1=\left(2^{p}-1\right)\left(2^{p(m-1)}+2^{p(m-2)}+\cdots+2^{p}+1\right)
$$

which is clearly divisible by $n=2^{p}-1$ and so $2^{n-1} \equiv 1(\bmod n)$.
3. (Restatement of second part of Exercise 4.6 on page 74) Show that if k is a positive integer and $n=2^{2^{k}}+1$ then $2^{n} \equiv 2(\bmod n)$. (This would be a consequence of Fermat's little theorem if n were a prime and the point of the exercise is to show this always, whether or not n is a prime.)

Proof. Write $n-1=2^{2^{k}}=2^{k+1} m$ where $m=2^{2^{k}-k-1}$ is an integer as $2^{k} \geq k+1$ for every integer $k \geq 1$ (in fact for every real $k \geq 1$). Now

$$
2^{n-1}-1=2^{2^{k+1} m}-1=\left(2^{2^{k+1}}-1\right)\left(2^{2^{k}(m-1)}+\cdots+2^{2^{k}}+1\right)
$$

and so $2^{2^{k+1}}-1=\left(2^{2^{k}}-1\right)\left(2^{2^{k}}+1\right)$ divides $2^{n-1}-1$ and so $2^{n-1} \equiv 1\left(\bmod 2^{2^{k}}+1\right)$ as desired.
4. Suppose $p>q$ are two primes. Show that there exists an integer a such that

$$
a^{p q} \not \equiv a \quad(\bmod p q)
$$

Proof. Since $p>q$ then p is odd. If $a^{p q} \equiv a(\bmod p q)$ for all a then in particular the same is true $\bmod p$. Thus $a^{p q} \equiv a(\bmod p)$. As in class take a to be a generator $\bmod p$. Then $a^{p q-1} \equiv 1(\bmod p)$ implies that the order $p-1$ of a divides $p q-1$ so $p-1 \mid p q-1$. But $p q-1=(p-1) q+q-1$ and so we'd need $p-1 \mid q-1$ which is impossible as $p-1>q-1$.
5. Show that an integer n is a prime if and only if

$$
(X+a)^{n} \equiv X^{n}+a \quad(\bmod n)
$$

for all integers a. [Hint: If p is the smallest prime factor of n but $p \neq n$ show that n cannot possibly divide $\binom{n}{p}$.]

Proof. In fact we'll show that one single a coprime to n suffices.
If n is a prime then $n \left\lvert\,\binom{ n}{k}\right.$ for all $1 \leq k \leq n-1$ as in class and so $(X+a)^{n} \equiv X^{n}+a^{n} \equiv X^{n}+a$ $(\bmod n)$ by Fermat's little theorem.
Now suppose that a coprime to n satisfies $(X+a)^{n} \equiv X^{n}+a(\bmod n)$ and also suppose that n is not a prime. We seek a contradiction. Expanding the LHS we get that for k between 1 and $n-1$ we need $\binom{n}{k} a^{k} \equiv 0(\bmod n)$ and since a is coprime to n we deduce that $n \left\lvert\,\binom{ n}{k}\right.$. If p is the smallest prime divisor of n but $n \neq p$ look at $k=p$. Let k be the exponent of p in n, i.e., $k=v_{p}(n)$. Then $p^{k}|n|\binom{n}{p}$. But

$$
\binom{n}{p}=\frac{n(n-1) \cdots(n-(p-1))}{p!}
$$

so if $p^{k} \left\lvert\,\binom{ n}{p}\right.$, as $p \mid p$!, we deduce that $p^{k+1} \mid n(n-1) \cdots(n-(p-1))$. For $1 \leq i \leq p-1, p \nmid n-i$ as $p \mid n$ but $p \nmid i$. Thus the only way p^{k+1} can divide $n(n-1) \cdots(n-(p-1))$ is if $p^{k+1} \mid n$ which contradicts the definition of k.

