Math 40520 Theory of Number Homework 8

Due Wednesday, 2015-11-18, in class

Do 5 of the following 6 problems. Please only attempt 5 because I will only grade 5.

1. Let a be a nonzero integer.
(a) Show that there exists at least one prime p such that $\left(\frac{a}{p}\right)=1$.
(b) Show that there are infinitely many primes p such that $\left(\frac{a}{p}\right)=1$.
2. Let $f(X) \in \mathbb{Z}[X]$ be a nonconstant polynomial. Consider $\mathcal{P}=\{p$ prime $|p| f(n)$ for some integer $n\}$. (For example when $f(0)=0$ then every prime number is in \mathcal{P}.)
(a) If $f(0) \neq 0$ show that $g(m)=f(f(0) m) / f(0)$ defines a polynomial with integer coefficients $g(X) \in \mathbb{Z}[X]$.
(b) Show that the set \mathcal{P} is always infinite. [Hint: If $\mathcal{P}=\left\{p_{1}, \ldots, p_{k}\right\}$ look at a prime dividing $g\left(m p_{1} \cdots p_{k}\right)$ for m large enough.]
3. Prove explicitly, using the AKS algorithm, that 31 is a prime. Don't verify all the polynomial congruences, but compute which congruences one needs to check.
4. Let m and n be two nonzero integers. Show that $a \equiv b(\bmod m, n)$ if and only if $a \equiv b(\bmod (m, n))$.
5. Show that there exists no polynomial $P(X) \in \mathbb{Z}[X]$ with the property that for any two polynomials $A(X), B(X) \in \mathbb{Z}[X]$ the following is true:

$$
A(X) \equiv B(X) \quad\left(\bmod 2, X^{2}-1\right) \text { if and only if } A(X) \equiv B(X) \quad(\bmod P(X))
$$

6. Let $L \subset \mathbb{R}^{2}$ be a lattice in the plane generated by two vectors $u=(a, b)$ and $v=(c, d)$. Show that the fundamental parallelogram has area $\left|\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right|$.
