Math 40520 Theory of Number Homework 8

Due Wednesday, 2015-11-18, in class

Do 5 of the following 6 problems. Please only attempt 5 because I will only grade 5 .

1. Let a be a nonzero integer.
(a) Show that there exists at least one prime p such that $\left(\frac{a}{p}\right)=1$.
(b) Show that there are infinitely many primes p such that $\left(\frac{a}{p}\right)=1$.

Proof. (a) Pick a large integer k such that $k^{2} a-1 \neq 0, \pm 1$. Pick p any prime $\mid k^{2} a-1$. Then $k^{2} a \equiv 1$ $(\bmod p)$ and so $\left(\frac{a}{p}\right)=1$.
(b) First solution: Suppose p_{1}, \ldots, p_{k} are all the primes such that $\left(\frac{a}{p}\right)=1$. Write $N=\left(p_{1} \cdots p_{k}\right)^{2}-$ a. Pick any prime $p \mid N$. If $\left(\frac{a}{p}\right)=-1$ it follows, as in class, that $p \mid x^{2}-a y^{2}$ if and only if $p \mid x, y$. Indeed, otherwise $a \equiv(x / y)^{2}(\bmod p)$ would be a quadratic residue. Thus $p \mid p_{1} \cdots p_{k}$ and $p \mid 1$ which is impossible. The only remaining possibility is if $N \in\{-1,0,1\}$ in which case no such p exists, but then we may simply replace $N=\left(p_{1} \cdots p_{k}\right)^{2}-a$ with $N=\left(p_{1} \cdots p_{k}\right)^{200}-a$ or some other large even exponent.
Second solution: Look at $P(X)=a X^{2}-1$. Then the next problem shows that there are infinitely many primes p such that $p \mid P(n)$ for some n. But then $a n^{2} \equiv 1(\bmod p)$ which immediately implies that a is a quadratic residue.
2. Let $f(X) \in \mathbb{Z}[X]$ be a nonconstant polynomial. Consider $\mathcal{P}=\{p$ prime $|p| f(n)$ for some integer $n\}$. (For example when $f(0)=0$ then every prime number is in \mathcal{P}.)
(a) If $f(0) \neq 0$ show that $g(m)=f(f(0) m) / f(0)$ defines a polynomial with integer coefficients $g(X) \in \mathbb{Z}[X]$.
(b) Show that the set \mathcal{P} is always infinite. [Hint: If $\mathcal{P}=\left\{p_{1}, \ldots, p_{k}\right\}$ look at a prime dividing $g\left(m p_{1} \cdots p_{k}\right)$ for m large enough.]

Proof. (a) Write $f(X)=a_{d} X^{d}+\cdots+a_{1} X+a_{0}$ in which case $f(0)=a_{0}$ and

$$
g(X)=f(f(0) X) / f(0)=a_{d} a_{0}^{d-1} X^{d}+a_{d-1} a_{0}^{d-2} X^{d-1}+\cdots+a_{1} X+1 \in \mathbb{Z}[X]
$$

(b) The case $f(0)=0$ is trivial as then \mathcal{P} consists of all primes. Assuming that $f(0) \neq 0$, the set \mathcal{P} is nonempty as for n large enough $f(n)$ is large so it has some prime divisor. Suppose $\mathcal{P}=\left\{p_{1}, \ldots, p_{k}\right\}$
is finite. The polynomial $h(X)=g\left(X p_{1} \cdots p_{k}\right)$ is nonconstant and so for m large enough the value $h(m)$ is large and therefore has a prime factor p. Thus

$$
p\left|1+\sum_{i=1}^{d} a_{i} a_{0}^{i-1} m^{i}\left(p_{1} \cdots p_{k}\right)^{i}=f\left(f(0) m p_{1} \cdots p_{k}\right) / f(0)\right| f\left(f(0) m p_{1} \cdots p_{k}\right)
$$

By definition this implies that $p \in \mathcal{P}$ and so $p=p_{i}$ for some i. But then $p \mid 1$ which is impossible.
3. Prove explicitly, using the AKS algorithm, that 31 is a prime. Don't verify all the polynomial congruences, but compute which congruences one needs to check.

Proof. We seek the smallest r such that the multiplicative order of $31 \bmod r$ is at least $\left(\log _{2}(31)\right)^{2}=$ $24.54 \ldots$ The multiplicative order of $n \bmod r$ is at most $\varphi(r)$ (by Euler) so our r must be such that $\varphi(r) \geq 25$ and, in particular, $r \geq 25$. The smallest r with this property is $r=29$ and we simply note that $31 \bmod 29=2$ has multiplicative order 28 as $2^{14} \equiv-1(\bmod 29)$. So our $r=29$.
Next, the bound on a is $\sqrt{\varphi(r)} \log _{2}(n)=26.21 \ldots$.
Thus we need to verify the congruences

$$
(X+a)^{31} \equiv X^{31}+a \quad\left(\bmod 31, X^{29}-1\right)
$$

for $1 \leq a \leq 26$.
4. Let m and n be two nonzero integers. Show that $a \equiv b(\bmod m, n)$ if and only if $a \equiv b(\bmod (m, n))$.

Proof. Let $d=(m, n)$. If $a \equiv b(\bmod m, n)$ then there exist integers u and v such that $a-b=u m+v n$ and so $d \mid u m+v n=a-b$ implying that $a \equiv b(\bmod d)$. Bezout implies that there exist integers p and q such that $p m+q n=d$. If $a \equiv b(\bmod d)$ then $a-b=k d$ for some integer k and so $a-b=k(p m+q n)=k p m+k q n$ so $a \equiv b(\bmod m, n)$.
5. Show that there exists no polynomial $P(X) \in \mathbb{Z}[X]$ with the property that for any two polynomials $A(X), B(X) \in \mathbb{Z}[X]$ the following is true:

$$
A(X) \equiv B(X) \quad\left(\bmod 2, X^{2}-1\right) \text { if and only if } A(X) \equiv B(X) \quad(\bmod P(X))
$$

Proof. Suppose such a polynomial $P(X)$ exists. Certainly $2 \equiv 0\left(\bmod 2, X^{2}-1\right)$ and so $2 \equiv 0$ $(\bmod P(X))$ implying that $P(X) \mid 2$. Thus $P(X)=1$ or 2 . Similarly $X^{2}-1 \equiv 0\left(\bmod 2, X^{2}-1\right)$ implies that $X^{2}-1 \equiv 0(\bmod P(X))$ and so $P(X) \mid X^{2}-1$. As $2 \nmid X^{2}-1\left(\left(X^{2}-1\right) / 2\right.$ does not have integral coefficients) it follows that $P(X)=1$. But then $1 \equiv 0(\bmod P(X))$ and so it would follows that $1 \equiv 0\left(\bmod 2, X^{2}-1\right)$ which would imply there exist two polynomials with integral coefficients $A(X)$ and $B(X)$ such that $1=2 A(X)+\left(X^{2}-1\right) B(X)$. Plugging in $X=1$ yields $1=2 A(1)$ which is impossible as $A(1) \in \mathbb{Z}$.
6. Let $L \subset \mathbb{R}^{2}$ be a lattice in the plane generated by two vectors $u=(a, b)$ and $v=(c, d)$. Show that the fundamental parallelogram has area $\left|\operatorname{det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right|$.

Proof. From calculus, the area of the parallelogram is the length of the cross product $(a, b) \times(c, d)$ which is $\left|\begin{array}{lll}i & j & k \\ a & b & 0 \\ c & d & 0\end{array}\right|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right| k$.

