
Math 40520 Theory of Number

Homework 8

Due Wednesday, 2015-11-18, in class

Do 5 of the following 6 problems. Please only attempt 5 because I will only grade 5.

1. Let a be a nonzero integer.

(a) Show that there exists at least one prime p such that

(
a

p

)
= 1.

(b) Show that there are infinitely many primes p such that

(
a

p

)
= 1.

Proof. (a) Pick a large integer k such that k2a− 1 6= 0,±1. Pick p any prime | k2a− 1. Then k2a ≡ 1

(mod p) and so

(
a

p

)
= 1.

(b) First solution: Suppose p1, . . . , pk are all the primes such that

(
a

p

)
= 1. Write N = (p1 · · · pk)2−

a. Pick any prime p | N . If

(
a

p

)
= −1 it follows, as in class, that p | x2 − ay2 if and only if p | x, y.

Indeed, otherwise a ≡ (x/y)2 (mod p) would be a quadratic residue. Thus p | p1 · · · pk and p | 1 which
is impossible. The only remaining possibility is if N ∈ {−1, 0, 1} in which case no such p exists, but
then we may simply replace N = (p1 · · · pk)2 − a with N = (p1 · · · pk)200 − a or some other large even
exponent.

Second solution: Look at P (X) = aX2 − 1. Then the next problem shows that there are infinitely
many primes p such that p | P (n) for some n. But then an2 ≡ 1 (mod p) which immediately implies
that a is a quadratic residue.

2. Let f(X) ∈ Z[X] be a nonconstant polynomial. Consider P = {p prime | p | f(n) for some integer n}.
(For example when f(0) = 0 then every prime number is in P.)

(a) If f(0) 6= 0 show that g(m) = f(f(0)m)/f(0) defines a polynomial with integer coefficients
g(X) ∈ Z[X].

(b) Show that the set P is always infinite. [Hint: If P = {p1, . . . , pk} look at a prime dividing
g(mp1 · · · pk) for m large enough.]

Proof. (a) Write f(X) = adX
d + · · ·+ a1X + a0 in which case f(0) = a0 and

g(X) = f(f(0)X)/f(0) = ada
d−1
0 Xd + ad−1a

d−2
0 Xd−1 + · · ·+ a1X + 1 ∈ Z[X]

(b) The case f(0) = 0 is trivial as then P consists of all primes. Assuming that f(0) 6= 0, the set P is
nonempty as for n large enough f(n) is large so it has some prime divisor. Suppose P = {p1, . . . , pk}
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is finite. The polynomial h(X) = g(Xp1 · · · pk) is nonconstant and so for m large enough the value
h(m) is large and therefore has a prime factor p. Thus

p | 1 +

d∑
i=1

aia
i−1
0 mi(p1 · · · pk)i = f(f(0)mp1 · · · pk)/f(0) | f(f(0)mp1 · · · pk)

By definition this implies that p ∈ P and so p = pi for some i. But then p | 1 which is impossible.

3. Prove explicitly, using the AKS algorithm, that 31 is a prime. Don’t verify all the polynomial congru-
ences, but compute which congruences one needs to check.

Proof. We seek the smallest r such that the multiplicative order of 31 mod r is at least (log2(31))2 =
24.54 . . .. The multiplicative order of n mod r is at most ϕ(r) (by Euler) so our r must be such that
ϕ(r) ≥ 25 and, in particular, r ≥ 25. The smallest r with this property is r = 29 and we simply note
that 31 mod 29 = 2 has multiplicative order 28 as 214 ≡ −1 (mod 29). So our r = 29.

Next, the bound on a is
√
ϕ(r) log2(n) = 26.21 . . ..

Thus we need to verify the congruences

(X + a)31 ≡ X31 + a (mod 31, X29 − 1)

for 1 ≤ a ≤ 26.

4. Let m and n be two nonzero integers. Show that a ≡ b (mod m,n) if and only if a ≡ b (mod (m,n)).

Proof. Let d = (m,n). If a ≡ b (mod m,n) then there exist integers u and v such that a−b = um+vn
and so d | um + vn = a − b implying that a ≡ b (mod d). Bezout implies that there exist integers
p and q such that pm + qn = d. If a ≡ b (mod d) then a − b = kd for some integer k and so
a− b = k(pm + qn) = kpm + kqn so a ≡ b (mod m,n).

5. Show that there exists no polynomial P (X) ∈ Z[X] with the property that for any two polynomials
A(X), B(X) ∈ Z[X] the following is true:

A(X) ≡ B(X) (mod 2, X2 − 1) if and only if A(X) ≡ B(X) (mod P (X))

Proof. Suppose such a polynomial P (X) exists. Certainly 2 ≡ 0 (mod 2, X2 − 1) and so 2 ≡ 0
(mod P (X)) implying that P (X) | 2. Thus P (X) = 1 or 2. Similarly X2 − 1 ≡ 0 (mod 2, X2 − 1)
implies that X2 − 1 ≡ 0 (mod P (X)) and so P (X) | X2 − 1. As 2 - X2 − 1 ((X2 − 1)/2 does not have
integral coefficients) it follows that P (X) = 1. But then 1 ≡ 0 (mod P (X)) and so it would follows
that 1 ≡ 0 (mod 2, X2 − 1) which would imply there exist two polynomials with integral coefficients
A(X) and B(X) such that 1 = 2A(X) + (X2 − 1)B(X). Plugging in X = 1 yields 1 = 2A(1) which is
impossible as A(1) ∈ Z.

6. Let L ⊂ R2 be a lattice in the plane generated by two vectors u = (a, b) and v = (c, d). Show that the

fundamental parallelogram has area

∣∣∣∣det

(
a b
c d

)∣∣∣∣.
Proof. From calculus, the area of the parallelogram is the length of the cross product (a, b) × (c, d)

which is

∣∣∣∣∣∣
i j k
a b 0
c d 0

∣∣∣∣∣∣ =

∣∣∣∣a b
c d

∣∣∣∣ k.
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