Math 40520 Theory of Number Homework 9

Due Wednesday, 2015-12-02, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5 .

1. Let p be a prime and $k, n \geq 1$ integers. Show that

$$
v_{p}\left(\left(p^{k} n\right)!\right)=\frac{n\left(p^{k}-1\right)}{p-1}+v_{p}(n!)
$$

2. Let p be a prime.
(a) For an integer n write $n=p q+r$ where $0 \leq r \leq p-1$. Show that

$$
\prod_{1 \leq d \leq n,(d, p)=1} d \equiv(-1)^{q} r!\quad(\bmod p)
$$

[Hint: Wilson's theorem.]

$$
\frac{n!}{p^{\ell}} \equiv(-1)^{\ell} n_{0}!n_{1}!\cdots n_{d}!\quad(\bmod p)
$$

3. Let p be a prime and m, n two integers. Write $m=\bar{m}_{d \ldots m_{1} m_{0}}^{(p)}, n={\overline{n_{d} \ldots n_{1} n_{0}}(p) \text { and } m-n=}=$ $\overline{k_{d} \ldots k_{1} k_{0}(p)}$. Show that if $\ell=v_{p}\left(\binom{m}{n}\right)$ then

$$
p^{-\ell}\binom{m}{n} \equiv(-1)^{\ell} \prod_{i=0}^{d} \frac{m_{i}!}{n_{i}!k_{i}!} \quad(\bmod p)
$$

4. (Variant of Exercise 8.3 on page 146) For a positive integer n and a complex number s define

$$
\sigma_{s}(n)=\sum_{d \mid n} d^{s}
$$

(a) Show that if m and n are coprime then $\sigma_{s}(m n)=\sigma_{s}(m) \sigma_{s}(n)$.
(b) Show that if $n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$ and $s \neq 0$ then

$$
\sigma_{s}(n)=\prod_{i=1}^{r} \frac{p_{i}^{s\left(k_{i}+1\right)}-1}{p_{i}^{s}-1}
$$

5 . Let $p \equiv 1(\bmod 3)$ be a prime.
(a) Show that there exists $u \in \mathbb{Z}$ such that $u^{2}+u+1 \equiv 0(\bmod p)$.
(b) Show that there exist integers x, y such that $p=x^{2}+x y+y^{2}$. [Hint: What is the area of ellipse $\left.x^{2}+x y+y^{2}=R^{2} ?\right]$
6. Exercise 8.24 on page 163 .
7. Exercise 8.21 on page 163 .
8. For a positive integer n let $\tau(n)$ be the number of positive divisors of n. Show that

$$
D_{\tau^{2}}(s)=\frac{\zeta(s)^{4}}{\zeta(2 s)}
$$

[Hint: Use the fact from class that τ, and therefore also τ^{2}, is multiplicative, and then some calculus.]

