
Math 40520 Theory of Number

Homework 9

Due Wednesday, 2015-12-02, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.

1. Let p be a prime and k, n ≥ 1 integers. Show that

vp((p
kn)!) =

n(pk − 1)

p− 1
+ vp(n!)

Proof. Write n = nd . . . n1n0(p). Then npk = nd . . . n1n0 0 . . . 0︸ ︷︷ ︸
k

. Applying our formula we get

vp((p
kn)!) =

pkn−
∑
ni

p− 1

and

vp(n!) =
n−

∑
ni

p− 1

Immediately we get

vp((p
kn)!) =

pkn− (n− (p− 1)vp(n!))

p− 1
=
n(pk − 1)

p− 1
+ vp(n!)

2. Let p be a prime.

(a) For an integer n write n = pq + r where 0 ≤ r ≤ p− 1. Show that∏
1≤d≤n,(d,p)=1

d ≡ (−1)qr! (mod p)

[Hint: Wilson’s theorem.]

(b) Write n = nd . . . n1n0(p) and ` = vp(n!). Conclude that

n!

p`
≡ (−1)`n0!n1! · · ·nd! (mod p)

Proof. (a) Note that ∏
`p+1≤d≤(`+1)p,(d,p)=1

d ≡
∏

1≤d≤p,(d,p)=1

d ≡ (p− 1)! ≡ −1 (mod p)
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and so ∏
1≤d≤n,(d,p)=1

d =

q−1∏
`=0

 ∏
`p+1≤d≤(`+1)p,(d,p)=1

d

× ∏
pq+1≤d≤n,(d,p)=1

d

≡ (−1)q
∏

1≤d≤r,(d,p)=1

d (mod p)

≡ (−1)qr! (mod p)

(b) Note that ` = vp(n!) =
∑n
k=1 vp(k) and so

n!

p`
=

n∏
k=1

k

pvp(k)

where the RHS can be rewritten not as k goes from 1 to n but as vp(k) goes from 1 on, as follows:

n!

p`
=
∏
e≥0

∏
1≤k≤n,vp(k)=e

k

pe

Note that if vp(k) = e then k = ped where 1 ≤ d ≤ n/pe and (d, e) = 1. Thus we can further rewrite
the product as

n!

p`
=
∏
e≥0

 ∏
1≤d≤bn/pec,(d,p)=1

d


The first part tells us that the inner product is congruent mod p to (−1)qr! where bn/pec = pq + r.

Writing n = nd . . . n1n0(p) we see that bn/pec = nd . . . ne(p) = p · nd . . . ne+1(p) + ne = pbn/pe+1c+ ne

so the inner product is congruent mod p to (−1)bn/p
e+1cne!.

Thus

n!

p`
≡
∏
e≥0

(−1)bn/p
e+1cne! (mod p)

= (−1)
∑

e≥0bn/p
e+1c

∏
e≥0

ne! (mod p)

= (−1)`
∏

ne! (mod p)

because we know that ` = vp(n!) =
∑
e≥1bn/pec.

3. Let p be a prime and m,n two integers. Write m = md . . .m1m0(p), n = nd . . . n1n0(p) and m − n =

kd . . . k1k0(p). Show that if ` = vp
((
m
n

))
then

p−`
(
m

n

)
≡ (−1)`

d∏
i=0

mi!

ni!ki!
(mod p)

Proof. Let µ = vp(m!), ν = vp(n!) and κ = vp(k!) in which case ` = µ− ν − κ. Thus

p−`
(
m

n

)
=

p−µm!

p−νn! · p−κk!

≡ (−1)µ
∏
mi!

(−1)ν
∏
ni! · (−1)κ

∏
ki!

≡ (−1)`
∏ mi!

ni!ki!
(mod p)
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using the previous problem.

4. (Variant of Exercise 8.3 on page 146) For a positive integer n and a complex number s define

σs(n) =
∑
d|n

ds

(a) Show that if m and n are coprime then σs(mn) = σs(m)σs(n).

(b) Show that if n = pk11 · · · pkrr and s 6= 0 then

σs(n) =

r∏
i=1

p
s(ki+1)
i − 1

psi − 1

Proof. (a): Suppose d | mn and write a = (d,m). Then d/a | mn/a and since (d/a,m/a) = 1 it follows
that b = d/a | n so d can be written as d = ab with a | m and b | n. Reciprocally, given a | m and b | n
then clearly d = ab | mn. Thus

σs(mn) =
∑
d|mn

ds =
∑
a|m

∑
b|n

(ab)s =
∑
a|m

as
∑
b|n

bs = σs(m)σs(n)

(b): We compute

σs(p
k) = 1s + ps + (p2)s + · · ·+ (pk)s = 1 + ps + (ps)2 + · · ·+ (ps)k =

ps(k+1) − 1

ps − 1

Using part (a)

σs(n) =

r∏
i=1

σs(p
ki
i ) =

r∏
i=1

p
s(ki+1)
i − 1

psi − 1

5. Let p ≡ 1 (mod 3) be a prime.

(a) Show that there exists u ∈ Z such that u2 + u+ 1 ≡ 0 (mod p).

(b) Show that there exist integers x, y such that p = x2 + xy + y2. [Hint: What is the area of ellipse
x2 + xy + y2 = R2?]

Proof. (a): As p 6= 2 the equation is equivalent to (2u + 1)2 + 3 = 4(u2 + u + 1) ≡ 0 (mod p) which

clearly has a solution as

(
−3

p

)
= 1 if p ≡ 1 (mod 3).

(b): As in class consider the lattice L = {(x, y) ∈ Z2 | y ≡ ux (mod p)} and the centrally symmetric
convex ellipse X whose boundary is given by the equation x2 + xy + y2 = αp where we’ll choose the
coefficient α later. The ellipse x2 + xy+ y2 = R2 has the axes along the y = ±x axes with long radius√

2R on the y = −x line and short radius
√

2R/
√

3 on the y = x line. Its area, from calculus, is
2πR2/

√
3. The area of X is then 2παp/

√
3.

As in class the area of the fundamental parallelogrom of the lattice L is p and to apply Minkowski’s
theorem we require the area 2παp/

√
3 of X to be > 4p so we require α > 2

√
3/π ≈ 1.1. For example

α < 2 close to 2 will work. Then Minkowski guarantees X ∩ L contains a nonzero point (x, y). As
(x, y) ∈ L it follows that x2 + xy + y2 ≡ x2(u2 + u + 1) ≡ 0 (mod p). As (x, y) ∈ X it follows that
x2 + xy + y2 < αp and the only integer in the range (0, αp) ⊂ (0, 2p) which is divisible by p is p itself.
Thus p = x2 + xy + y2.
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6. Exercise 8.24 on page 163.

Proof. Write n =
∏
pkii . Then d | n is a prime power if and only if d | pkii for some i. In this case

either Λ(d) = 0 if d = 1 or Λ(d) = ln(pi) if d 6= 1.

Therefore ∑
d|n

Λ(d) =
∑
i

∑
d|pki

i

Λ(d) =
∑
i

ki∑
e=1

Λ(pei ) =
∑
i

ki ln(pi) =
∑
i

ln(pkii ) = ln(n)

(b): Applying Mobius inversion we get

Λ(n) =
∑
d|n

µ(d) ln(n/d) = ln(n)
∑
d|n

µ(d)−
∑
d|n

µ(d) ln(d) = −
∑
d|n

µ(d) ln(d)

7. Exercise 8.21 on page 163.

Proof. (a): We need that χ(mn) = χ(m)χ(n) for all m,n. If one of m or n is even then this is
trivial as 0 = 0 · anything. If m and n are odd then note that χ(m) ≡ m (mod 4) so the χ is clearly
multiplicative.

(b): Using part (a) note that for u = 1 or 3,

τu(n) = #{d | n | d ≡ u (mod 4)}
= #{d | n | χ(d) ≡ u (mod 4)}

=
∑

d|n,χ(d)≡u (mod 4)

1

and so we may compute

g(n) = τ1(n)− τ3(n) =
∑

d|n,χ(d)=1

1−
∑

d|n,χ(d)=−1

1

=
∑

d|n,χ(d)=1

χ(d) +
∑

d|n,χ(d)=−1

χ(d)

=
∑
d|n

χ(d)

which is then multiplicative as in class because χ is multiplicative.

Thus g(n) =
∏
g(pkii ). But

∑k
e=0 1 = k + 1 and

∑k
e=0(−1)e = 0 if k is odd and = 1 if k is even so

g(pk) =
∑
d|pk

χ(d) =

k∑
e=0

χ(p)k =


0 χ(p) = 0

k + 1 χ(p) = 1

0 or 1 χ(p) = −1

=


0 p = 2

k + 1 p ≡ 1 (mod 4)

0 or 1 p ≡ 3 (mod 4)

Writing n = 2a
∏
pkii
∏
q
rj
j where pi ≡ 1 (mod 4) and qj ≡ 3 (mod 4) then

g(n) =
∏

g(pkii )
∏

g(q
rj
j ) =

∏
(ki + 1)

∏
(0 or 1)

and g(n) is nonzero if and only if all exponents rj are even in which case g(n) =
∏

(ki + 1).
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8. For a positive integer n let τ(n) be the number of positive divisors of n. Show that

Dτ2(s) =
ζ(s)4

ζ(2s)

Proof. As τ(n) is multiplicative

Dτ2(s) =
∏
p

∑
k≥0

τ2(pk)

pks


where τ(pk) = k + 1.

We compute ∑
k≥0

(k + 1)2

pks
=

1 + p−s

(1− p−s)3

as
∑

(k + 2)(k + 1)xk = (
∑
xk)′′ = 2(1− x)−3 and

∑
(k + 1)xk = (

∑
xk)′ = (1− x)−2 which implies

that
∑

(k + 1)2xk =
∑

(k + 2)(k + 1)xk −
∑

(k + 1)xk = 2(1− x)−3 − (1− x)−2 = (1 + x)(1− x)−3.

Taking the product over p we see that
∏

(1− p−s)−1 = ζ(s) and
∏

(1 + p−s) = Dλ(s)−1 = ζ(s)/ζ(2s)
where λ is Liouville’s function that I mentioned in class. Putting everything together we get that

Dτ2(s) =
ζ(s)4

ζ(2s)
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