Math 40520 Theory of Number Homework 9

Due Wednesday, 2015-12-02, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.

1. Let p be a prime and $k, n \geq 1$ integers. Show that

$$
v_{p}\left(\left(p^{k} n\right)!\right)=\frac{n\left(p^{k}-1\right)}{p-1}+v_{p}(n!)
$$

Proof. Write $n=\overline{n_{d} \ldots n_{1} n_{0}}(p)$. Then $n p^{k}=\overline{n_{d} \ldots n_{1} n_{0} \underbrace{0 \ldots 0}_{k}}$. Applying our formula we get

$$
v_{p}\left(\left(p^{k} n\right)!\right)=\frac{p^{k} n-\sum n_{i}}{p-1}
$$

and

$$
v_{p}(n!)=\frac{n-\sum n_{i}}{p-1}
$$

Immediately we get

$$
v_{p}\left(\left(p^{k} n\right)!\right)=\frac{p^{k} n-\left(n-(p-1) v_{p}(n!)\right)}{p-1}=\frac{n\left(p^{k}-1\right)}{p-1}+v_{p}(n!)
$$

2. Let p be a prime.
(a) For an integer n write $n=p q+r$ where $0 \leq r \leq p-1$. Show that

$$
\prod_{1 \leq d \leq n,(d, p)=1} d \equiv(-1)^{q} r!\quad(\bmod p)
$$

[Hint: Wilson's theorem.]
(b) Write $n=\overline{n_{d} \ldots n_{1} n_{0}}(p)$ and $\ell=v_{p}(n!)$. Conclude that

$$
\frac{n!}{p^{\ell}} \equiv(-1)^{\ell} n_{0}!n_{1}!\cdots n_{d}!\quad(\bmod p)
$$

Proof. (a) Note that

$$
\prod_{\ell p+1 \leq d \leq(\ell+1) p,(d, p)=1} d \equiv \prod_{1 \leq d \leq p,(d, p)=1} d \equiv(p-1)!\equiv-1 \quad(\bmod p)
$$

and so

$$
\begin{aligned}
\prod_{1 \leq d \leq n,(d, p)=1} d & =\prod_{\ell=0}^{q-1}\left(\prod_{\ell p+1 \leq d \leq(\ell+1) p,(d, p)=1} d\right) \times \prod_{p q+1 \leq d \leq n,(d, p)=1} d \\
& \equiv(-1)^{q} \prod_{1 \leq d \leq r,(d, p)=1} d \quad(\bmod p) \\
& \equiv(-1)^{q} r!\quad(\bmod p)
\end{aligned}
$$

(b) Note that $\ell=v_{p}(n!)=\sum_{k=1}^{n} v_{p}(k)$ and so

$$
\frac{n!}{p^{\ell}}=\prod_{k=1}^{n} \frac{k}{p^{v_{p}(k)}}
$$

where the RHS can be rewritten not as k goes from 1 to n but as $v_{p}(k)$ goes from 1 on, as follows:

$$
\frac{n!}{p^{\ell}}=\prod_{e \geq 0} \prod_{1 \leq k \leq n, v_{p}(k)=e} \frac{k}{p^{e}}
$$

Note that if $v_{p}(k)=e$ then $k=p^{e} d$ where $1 \leq d \leq n / p^{e}$ and $(d, e)=1$. Thus we can further rewrite the product as

$$
\frac{n!}{p^{\ell}}=\prod_{e \geq 0}\left(\prod_{1 \leq d \leq\left\lfloor n / p^{e}\right\rfloor,(d, p)=1} d\right)
$$

The first part tells us that the inner product is congruent mod p to $(-1)^{q} r$! where $\left\lfloor n / p^{e}\right\rfloor=p q+r$.
Writing $n=\overline{n_{d} \ldots n_{1} n_{0}}(p)$ we see that $\left\lfloor n / p^{e}\right\rfloor=\overline{n_{d} \ldots n_{e}}(p)=p \cdot{\overline{n_{d} \ldots n_{e+1}}(p)}+n_{e}=p\left\lfloor n / p^{e+1}\right\rfloor+n_{e}$ so the inner product is congruent $\bmod p$ to $(-1)^{\left\lfloor n / p^{e+1}\right\rfloor} n_{e}$!.
Thus

$$
\begin{aligned}
\frac{n!}{p^{\ell}} & \equiv \prod_{e \geq 0}(-1)^{\left\lfloor n / p^{e+1}\right\rfloor} n_{e}!\quad(\bmod p) \\
& =(-1)^{\sum_{e \geq 0}\left\lfloor n / p^{e+1}\right\rfloor} \prod_{e \geq 0} n_{e}!\quad(\bmod p) \\
& =(-1)^{\ell} \prod n_{e}!\quad(\bmod p)
\end{aligned}
$$

because we know that $\ell=v_{p}(n!)=\sum_{e \geq 1}\left\lfloor n / p^{e}\right\rfloor$.
3. Let p be a prime and m, n two integers. Write $m=\overline{m_{d} \ldots m_{1} m_{0}}(p), n=\overline{n_{d} \ldots n_{1} n_{0}}(p)$ and $m-n=$ $\overline{k_{d} \ldots k_{1} k_{0}}(p)$. Show that if $\ell=v_{p}\left(\binom{m}{n}\right)$ then

$$
p^{-\ell}\binom{m}{n} \equiv(-1)^{\ell} \prod_{i=0}^{d} \frac{m_{i}!}{n_{i}!k_{i}!} \quad(\bmod p)
$$

Proof. Let $\mu=v_{p}(m!), \nu=v_{p}(n!)$ and $\kappa=v_{p}(k!)$ in which case $\ell=\mu-\nu-\kappa$. Thus

$$
\begin{aligned}
p^{-\ell}\binom{m}{n} & =\frac{p^{-\mu} m!}{p^{-\nu} n!\cdot p^{-\kappa} k!} \\
& \equiv \frac{(-1)^{\mu} \prod m_{i}!}{(-1)^{\nu} \prod n_{i}!\cdot(-1)^{\kappa} \prod k_{i}!} \\
& \equiv(-1)^{\ell} \prod \frac{m_{i}!}{n_{i}!k_{i}!} \quad(\bmod p)
\end{aligned}
$$

using the previous problem.
4. (Variant of Exercise 8.3 on page 146) For a positive integer n and a complex number s define

$$
\sigma_{s}(n)=\sum_{d \mid n} d^{s}
$$

(a) Show that if m and n are coprime then $\sigma_{s}(m n)=\sigma_{s}(m) \sigma_{s}(n)$.
(b) Show that if $n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$ and $s \neq 0$ then

$$
\sigma_{s}(n)=\prod_{i=1}^{r} \frac{p_{i}^{s\left(k_{i}+1\right)}-1}{p_{i}^{s}-1}
$$

Proof. (a): Suppose $d \mid m n$ and write $a=(d, m)$. Then $d / a \mid m n / a$ and since $(d / a, m / a)=1$ it follows that $b=d / a \mid n$ so d can be written as $d=a b$ with $a \mid m$ and $b \mid n$. Reciprocally, given $a \mid m$ and $b \mid n$ then clearly $d=a b \mid m n$. Thus

$$
\sigma_{s}(m n)=\sum_{d \mid m n} d^{s}=\sum_{a \mid m} \sum_{b \mid n}(a b)^{s}=\sum_{a \mid m} a^{s} \sum_{b \mid n} b^{s}=\sigma_{s}(m) \sigma_{s}(n)
$$

(b): We compute

$$
\sigma_{s}\left(p^{k}\right)=1^{s}+p^{s}+\left(p^{2}\right)^{s}+\cdots+\left(p^{k}\right)^{s}=1+p^{s}+\left(p^{s}\right)^{2}+\cdots+\left(p^{s}\right)^{k}=\frac{p^{s(k+1)}-1}{p^{s}-1}
$$

Using part (a)

$$
\sigma_{s}(n)=\prod_{i=1}^{r} \sigma_{s}\left(p_{i}^{k_{i}}\right)=\prod_{i=1}^{r} \frac{p_{i}^{s\left(k_{i}+1\right)}-1}{p_{i}^{s}-1}
$$

5 . Let $p \equiv 1(\bmod 3)$ be a prime.
(a) Show that there exists $u \in \mathbb{Z}$ such that $u^{2}+u+1 \equiv 0(\bmod p)$.
(b) Show that there exist integers x, y such that $p=x^{2}+x y+y^{2}$. [Hint: What is the area of ellipse $\left.x^{2}+x y+y^{2}=R^{2} ?\right]$

Proof. (a): As $p \neq 2$ the equation is equivalent to $(2 u+1)^{2}+3=4\left(u^{2}+u+1\right) \equiv 0(\bmod p)$ which clearly has a solution as $\left(\frac{-3}{p}\right)=1$ if $p \equiv 1(\bmod 3)$.
(b): As in class consider the lattice $L=\left\{(x, y) \in \mathbb{Z}^{2} \mid y \equiv u x(\bmod p)\right\}$ and the centrally symmetric convex ellipse X whose boundary is given by the equation $x^{2}+x y+y^{2}=\alpha p$ where we'll choose the coefficient α later. The ellipse $x^{2}+x y+y^{2}=R^{2}$ has the axes along the $y= \pm x$ axes with long radius $\sqrt{2} R$ on the $y=-x$ line and short radius $\sqrt{2} R / \sqrt{3}$ on the $y=x$ line. Its area, from calculus, is $2 \pi R^{2} / \sqrt{3}$. The area of X is then $2 \pi \alpha p / \sqrt{3}$.
As in class the area of the fundamental parallelogrom of the lattice L is p and to apply Minkowski's theorem we require the area $2 \pi \alpha p / \sqrt{3}$ of X to be $>4 p$ so we require $\alpha>2 \sqrt{3} / \pi \approx 1.1$. For example $\alpha<2$ close to 2 will work. Then Minkowski guarantees $X \cap L$ contains a nonzero point (x, y). As $(x, y) \in L$ it follows that $x^{2}+x y+y^{2} \equiv x^{2}\left(u^{2}+u+1\right) \equiv 0(\bmod p)$. As $(x, y) \in X$ it follows that $x^{2}+x y+y^{2}<\alpha p$ and the only integer in the range $(0, \alpha p) \subset(0,2 p)$ which is divisible by p is p itself. Thus $p=x^{2}+x y+y^{2}$.
6. Exercise 8.24 on page 163 .

Proof. Write $n=\prod p_{i}^{k_{i}}$. Then $d \mid n$ is a prime power if and only if $d \mid p_{i}^{k_{i}}$ for some i. In this case either $\Lambda(d)=0$ if $d=1$ or $\Lambda(d)=\ln \left(p_{i}\right)$ if $d \neq 1$.
Therefore

$$
\sum_{d \mid n} \Lambda(d)=\sum_{i} \sum_{d \mid p_{i}^{k_{i}}} \Lambda(d)=\sum_{i} \sum_{e=1}^{k_{i}} \Lambda\left(p_{i}^{e}\right)=\sum_{i} k_{i} \ln \left(p_{i}\right)=\sum_{i} \ln \left(p_{i}^{k_{i}}\right)=\ln (n)
$$

(b): Applying Mobius inversion we get

$$
\Lambda(n)=\sum_{d \mid n} \mu(d) \ln (n / d)=\ln (n) \sum_{d \mid n} \mu(d)-\sum_{d \mid n} \mu(d) \ln (d)=-\sum_{d \mid n} \mu(d) \ln (d)
$$

7. Exercise 8.21 on page 163 .

Proof. (a): We need that $\chi(m n)=\chi(m) \chi(n)$ for all m, n. If one of m or n is even then this is trivial as $0=0 \cdot$ anything. If m and n are odd then note that $\chi(m) \equiv m(\bmod 4)$ so the χ is clearly multiplicative.
(b): Using part (a) note that for $u=1$ or 3 ,

$$
\begin{aligned}
& \tau_{u}(n)=\#\{d|n| d \equiv u \quad(\bmod 4)\} \\
&=\#\{d|n| \chi(d) \equiv u \quad(\bmod 4)\} \\
&=\sum_{d \mid n, \chi(d) \equiv u} 1 \\
&(\bmod 4)
\end{aligned}
$$

and so we may compute

$$
\begin{aligned}
g(n)=\tau_{1}(n)-\tau_{3}(n) & =\sum_{d \mid n, \chi(d)=1} 1-\sum_{d \mid n, \chi(d)=-1} 1 \\
& =\sum_{d \mid n, \chi(d)=1} \chi(d)+\sum_{d \mid n, \chi(d)=-1} \chi(d) \\
& =\sum_{d \mid n} \chi(d)
\end{aligned}
$$

which is then multiplicative as in class because χ is multiplicative.
Thus $g(n)=\prod g\left(p_{i}^{k_{i}}\right)$. But $\sum_{e=0}^{k} 1=k+1$ and $\sum_{e=0}^{k}(-1)^{e}=0$ if k is odd and $=1$ if k is even so

$$
g\left(p^{k}\right)=\sum_{d \mid p^{k}} \chi(d)=\sum_{e=0}^{k} \chi(p)^{k}=\left\{\begin{array}{ll}
0 & \chi(p)=0 \\
k+1 & \chi(p)=1 \\
0 \text { or } 1 & \chi(p)=-1
\end{array}=\left\{\begin{array}{ll}
0 & p=2 \\
k+1 & p \equiv 1
\end{array} \quad(\bmod 4)\right.\right.
$$

Writing $n=2^{a} \prod p_{i}^{k_{i}} \prod q_{j}^{r_{j}}$ where $p_{i} \equiv 1(\bmod 4)$ and $q_{j} \equiv 3(\bmod 4)$ then

$$
g(n)=\prod g\left(p_{i}^{k_{i}}\right) \prod g\left(q_{j}^{r_{j}}\right)=\prod\left(k_{i}+1\right) \prod(0 \text { or } 1)
$$

and $g(n)$ is nonzero if and only if all exponents r_{j} are even in which case $g(n)=\prod\left(k_{i}+1\right)$.
8. For a positive integer n let $\tau(n)$ be the number of positive divisors of n. Show that

$$
D_{\tau^{2}}(s)=\frac{\zeta(s)^{4}}{\zeta(2 s)}
$$

Proof. As $\tau(n)$ is multiplicative

$$
D_{\tau^{2}}(s)=\prod_{p}\left(\sum_{k \geq 0} \frac{\tau^{2}\left(p^{k}\right)}{p^{k s}}\right)
$$

where $\tau\left(p^{k}\right)=k+1$.
We compute

$$
\sum_{k \geq 0} \frac{(k+1)^{2}}{p^{k s}}=\frac{1+p^{-s}}{\left(1-p^{-s}\right)^{3}}
$$

as $\sum(k+2)(k+1) x^{k}=\left(\sum x^{k}\right)^{\prime \prime}=2(1-x)^{-3}$ and $\sum(k+1) x^{k}=\left(\sum x^{k}\right)^{\prime}=(1-x)^{-2}$ which implies that $\sum(k+1)^{2} x^{k}=\sum(k+2)(k+1) x^{k}-\sum(k+1) x^{k}=2(1-x)^{-3}-(1-x)^{-2}=(1+x)(1-x)^{-3}$.
Taking the product over p we see that $\prod\left(1-p^{-s}\right)^{-1}=\zeta(s)$ and $\prod\left(1+p^{-s}\right)=D_{\lambda}(s)^{-1}=\zeta(s) / \zeta(2 s)$ where λ is Liouville's function that I mentioned in class. Putting everything together we get that

$$
D_{\tau^{2}}(s)=\frac{\zeta(s)^{4}}{\zeta(2 s)}
$$

