Math 40520 Theory of Number
Homework 9

Due Wednesday, 2015-12-02, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.

1. Let p be a prime and k,n > 1 integers. Show that

n(pF —1)

u(@F ) = L

+ vp(n!)

Proof. Write n =g .. n1ng(,). Then np* =ng...n1no0...0. Applying our formula we get
k

_ Pkn — > n;
up((P*n)!) = -1

and

Immediately we get

oy (P*)!) = phn—(n—(p—vy(nh)) _ n(p*-1)

2. Let p be a prime.

(a) For an integer n write n = pg + r where 0 < r < p — 1. Show that

H d=(-1)%! (mod p)

1<d<n,(d,p)=1

[Hint: Wilson’s theorem.]
(b) Write n = g .. m17g(p) and £ = vy(n!). Conclude that

!
I% = (=1)ng!ni!---ng! (mod p)

Proof. (a) Note that

H d= H d=(p—-1)!=-1 (mod p)

Lp+1<d<(¢+1)p,(d,p)=1 1<d<p,(d,p)=1



and so

d= 11 d| x 11 d

1<d<n,(d,p)=1 £=0 \£Lp+1<d<(£+1)p,(d,p)=1 pg+1<d<n,(d,p)=1
= (-1)¢ H d (mod p)
1<d<r,(d,p)=1
(=D)%!  (mod p)

(b) Note that £ = v,(n!) = >"7_, v,(k) and so
n! ok
pf - kl;[l pq;p(k)
where the RHS can be rewritten not as k goes from 1 to n but as v,(k) goes from 1 on, as follows:
I
e2>01<k<n,v,(k)=e

Note that if v,(k) = e then k = p°d where 1 < d < n/p® and (d,e) = 1. Thus we can further rewrite
the product as

n!
EZH 11 d
e20 \1<d<|n/p°],(d,p)=1
The first part tells us that the inner product is congruent mod p to (—1)?r! where |n/p®| = pg + r.
Writing n = g ... 7o () we see that |n/p®| =ng. . ey =P N -- Met1(p) + Ne = pln/pTt] + ne

so the inner product is congruent mod p to (—1)L"/pc+1Jne!.

Thus
! e
2= T[0! M ngt (mod p)
p e>0
= (~1)Zezol/P I TT ! (mod p)
e>0
= (-1)* Hne (mod p)
because we know that £ = v,(n!) = 2521 [n/p]. O

. Let p be a prime and m,n two integers. Write m = mq ... miMo(p), n = Nq...N1No(p) and m —n =

ka . ..kiko(py. Show that if £ = v, (( )) then

m d m;!
p () = 0 Tl tmed

Proof. Let p = vp(m!), v = vp(n!) and k = vp(k!) in which case £ = p — v — k. Thus

_o(m p~Hm)!
() =
—1)“Hmi!
(07Tt (CTIR

1!
H 'k' (mod p)




using the previous problem. O

4. (Variant of Exercise 8.3 on page 146) For a positive integer n and a complex number s define
os(n) = Z d®
d|n

(a) Show that if m and n are coprime then os(mn) = os(m)os(n).
(b) Show that if n = p¥ ... pkr and s # 0 then

T p‘is(ki+1) _1

os(n) = H

i=1

p; —1

Proof. (a): Suppose d | mn and write a = (d,m). Then d/a | mn/a and since (d/a,m/a) = 1 it follows
that b =d/a | n so d can be written as d = ab with a | m and b | n. Reciprocally, given a | m and b | n
then clearly d = ab | mn. Thus

os(mn) = Z d’ = Z Z(ab)S = Zas Z b* = os(m)os(n)

dlmn alm bln alm bln

(b): We compute
Us(pk) — 1s+ps+(p2)s_~__“+(pk)s :1_’_ps+(ps)2_~_.“+(ps)k _

Using part (a)

5. Let p=1 (mod 3) be a prime.

(a) Show that there exists u € Z such that u?> + u+1 =0 (mod p).

(b) Show that there exist integers x,y such that p = 2% + 2y + y?. [Hint: What is the area of ellipse
2%+ xy + y? = R?7]

Proof. (a): As p # 2 the equation is equivalent to (2u + 1) + 3 = 4(u®> + v+ 1) = 0 (mod p) which

-3
clearly has a solution as s =1lifp=1 (mod 3).

(b): As in class consider the lattice L = {(z,y) € Z? | y = ux (mod p)} and the centrally symmetric
convex ellipse X whose boundary is given by the equation z? + zy + y?> = ap where we’ll choose the
coefficient « later. The ellipse 22 4+ zy + y? = R? has the axes along the y = +x axes with long radius
V2R on the y = —x line and short radius \/iR/\/g on the y = x line. Its area, from calculus, is
27 R%//3. The area of X is then 2map//3.

As in class the area of the fundamental parallelogrom of the lattice L is p and to apply Minkowski’s
theorem we require the area 27Tap/\/§ of X to be > 4p so we require a > 2v/3/m ~ 1.1. For example
a < 2 close to 2 will work. Then Minkowski guarantees X N L contains a nonzero point (x,y). As
(z,y) € L it follows that 22 + 2y + y? = 22(u®> + u+ 1) = 0 (mod p). As (z,y) € X it follows that
22 + 2y + y? < ap and the only integer in the range (0, ap) C (0,2p) which is divisible by p is p itself.
Thus p = 22 + zy + y>. O



6. Exercise 8.24 on page 163.
Proof. Write n = pr Then d | n is a prime power if and only if d | pf for some ¢. In this case
either A(d) =0if d =1 or A(d) =1In(p;) if d # 1.
Therefore

ki
DM =D M) =D > AP = Z k; In(p;) = Zm(pff) = In(n)

d|n 7 dlpfi i e=1

(b): Applying Mobius inversion we get

) = 3 (@) in(n/d) = () 3 u(d) — 3 u(d) In(d) = — 3 pu(d) Ind)
d|n d|n

d|n d|n

7. Exercise 8.21 on page 163.

Proof. (a): We need that x(mn) = x(m)x(n) for all m,n. If one of m or n is even then this is
trivial as 0 = 0 - anything. If m and n are odd then note that x(m) = m (mod 4) so the x is clearly
multiplicative.

(b): Using part (a) note that for u =1 or 3,
Tu(n) =#{d|n|d=u (mod4)}
=#{d[n|[x(d)=u (mod4)}
= Z 1
dln,x(d)=u  (mod 4)
and so we may compute

gy =nm)—mm) = Y 1- 3 1

dn,x(d)=1 dn,x(d)=-1

= > x@d+ > xd

dinx(d)=1 dinx(d)=—1

= x(d)
d|n

which is then multiplicative as in class because x is multiplicative.
Thus g(n) = [T g(p¥). But 25:01 =k+1 and Zfzo(—l)e =01if k is odd and = 1 if k is even so

K 0 x(p) =0 0 p=2
g = x(@ = x=qk+1 x(p)=1 =<{k+1 p=1 (mod4)
d|p* e=0 Oorl x(p)=-1 Oorl p=3 (mod4)

Writing n = 2% [ pF [] q;-j where p; =1 (mod 4) and ¢; = 3 (mod 4) then

gn) =TJo@) [Jola) = [ ki + 1) JJ (0 or 1)

and g(n) is nonzero if and only if all exponents r; are even in which case g(n) = [[(k; + 1).



8. For a positive integer n let 7(n) be the number of positive divisors of n. Show that

Proof. As 7(n) is multiplicative

where 7(pF) =k + 1.

‘We compute

> (k+1)? L+p~°

pks (1 _ p—s)B
as Y. (k+2)(k+1)zF = X 2% =2(1 —2)~3 and Y (k + 1)2* = (3 2%)" = (1 — 2)~2 which implies
that > (k+1)22F =S (k+2)(k+ a2k =Y (k+ )aF =21 -2) 3 -1 -2) 2 =1 +2)(1 —2)73
Taking the product over p we see that [[(1 — p=%)~! = ((s) and [J(1 +p~%) = Da(s) "1 = ((s)/¢(25)
where A is Liouville’s function that I mentioned in class. Putting everything together we get that

()
¢(2s)

D.,.z (S) =



