Math 40520 Theory of Number Homework 10

Due Wednesday, 2015-12-09, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.

1. For a positive integer n let $f(n) \#\left\{(x, y, z, t) \in \mathbb{Z}^{4} \mid n=x y z t\right\}$ the number of ways to write n as an ordered product of 4 integers. For example 12 can be written in 4 ways as $12 \cdot 1 \cdot 1 \cdot 1$, in 12 ways as $6 \cdot 2 \cdot 1 \cdot 1$, in 12 ways as $4 \cdot 3 \cdot 1 \cdot 1$ and 12 ways as $3 \cdot 2 \cdot 2 \cdot 1$ for a total of $f(12)=40$.
(a) Show that $D_{f}(s)=\zeta(s)^{4}$.
(b) Show that

$$
f(n)=\sum_{d^{2} \mid n} \tau\left(n / d^{2}\right)^{2}
$$

(For example $f(12)=40=\tau(12)^{2}+\tau(3)^{2}=6^{2}+2^{2}$.) [Hint: Compare the Dirichlet series of τ^{2} and f.]
2. Show that $\mathbb{Z}[\sqrt{3}]$ is a Euclidean domain. [Hint: similar to $\mathbb{Z}[\sqrt{2}]$, but needs one more step.]
3. Consider the Euclidean domain $R=\mathbb{Z}[i]$. Find the gcd of $x=21+47 i$ and $y=62+9 i$ using the Euclidean algorithm.
4. Consider the Euclidean domain $R=\mathbb{Z}[\sqrt{2}]$ and let $x=36-19 \sqrt{2}$ and $y=35-31 \sqrt{2}$. Compute the Bézout identity: find the gcd $d=(x, y)$ and two elements $p, q \in \mathbb{Z}[\sqrt{2}]$ such that $d=x p+y q$.
5. Show that $2,3,1 \pm \sqrt{-5}$ are irreducible in the domain $\mathbb{Z}[\sqrt{-5}]$, but they are not prime. Conclude that $\mathbb{Z}[\sqrt{-5}]$ is not a Euclidean domain.
6. Show that if a prime integer p is $\equiv \pm 3(\bmod 8)$ then p is a prime element of the domain $\mathbb{Z}[\sqrt{2}]$.
7. Consider the set $\mathbb{Z}[\sqrt[3]{2}]=\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Z}\}$ as a subset of \mathbb{R}.
(a) Show that $\mathbb{Z}[\sqrt[3]{2}]$ is a domain. [Hint: check if it is closed under,,$+- \cdot$.]
(b) Take for granted that $N(a+b \sqrt[3]{2}+c \sqrt[3]{4})=a^{3}+2 b^{3}+4 c^{3}-8 a b c$ satisfies the following two properties: i. $N(x y)=N(x) N(y)$ for all x, y of the form $a+b \sqrt[3]{2}+c \sqrt[3]{4}$ and ii. $N(x)=0$ if and only if $x=0$ (this is a boring exercise). If $a, b, c \in(0,1 / 2)$ show that $N(a+b \sqrt[3]{2}+c \sqrt[3]{4}) \in(-1,1)$.
(c) Show that $\mathbb{Z}[\sqrt[3]{2}]$ is a Euclidean domain with Euclidean function $d(x)=|N(x)|$.
$(\mathbb{Z}[\sqrt[3]{3}]$ also has $d(x)=|N(x)|$ as a Euclidean function but these are the only two examples of this kind.)

