Math 40520 Theory of Number Homework 10

Due Wednesday, 2015-12-09, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.

1. For a positive integer n let $f(n) \#\left\{(x, y, z, t) \in \mathbb{Z}^{4} \mid n=x y z t\right\}$ the number of ways to write n as an ordered product of 4 integers. For example 12 can be written in 4 ways as $12 \cdot 1 \cdot 1 \cdot 1$, in 12 ways as $6 \cdot 2 \cdot 1 \cdot 1$, in 12 ways as $4 \cdot 3 \cdot 1 \cdot 1$ and 12 ways as $3 \cdot 2 \cdot 2 \cdot 1$ for a total of $f(12)=40$.
(a) Show that $D_{f}(s)=\zeta(s)^{4}$.
(b) Show that

$$
f(n)=\sum_{d^{2} \mid n} \tau\left(n / d^{2}\right)^{2}
$$

(For example $f(12)=40=\tau(12)^{2}+\tau(3)^{2}=6^{2}+2^{2}$.) [Hint: Compare the Dirichlet series of τ^{2} and f.]

Proof. (a)

$$
\zeta(s)^{4}=\left(\sum \frac{1}{n^{s}}\right)^{4}=\sum_{a, b, c, d \geq 1} \frac{1}{(a b c d)^{s}}=\sum_{n \geq 1} \sum_{a b c d=n} \frac{1}{n^{s}}=\sum_{n \geq 1} \frac{f(n)}{n^{s}}=D_{f}(s)
$$

(b) From the previous homework you already know that $D_{\tau^{2}}=\zeta(s)^{4} / \zeta(2 s)$ so part (a) implies that

$$
D_{f}(s)=\zeta(s)^{4}=\zeta(2 s) D_{\tau^{2}}(s)
$$

which implies that

$$
\sum \frac{f(n)}{n^{s}}=\sum \frac{1}{a^{2 s}} \sum \frac{\tau(b)^{2}}{b^{s}}=\sum_{a, b} \frac{\tau(b)^{2}}{\left(a^{2} b\right)^{s}}=\sum_{n \geq 1} \sum_{a^{2} b=n} \frac{\tau(b)^{2}}{n^{s}}
$$

which immediately gives

$$
f(n)=\sum_{a^{2} b=n} \tau(b)^{2}=\sum_{d^{2} \mid n} \tau\left(n / d^{2}\right)^{2}
$$

2. Show that $\mathbb{Z}[\sqrt{3}]$ is a Euclidean domain. [Hint: similar to $\mathbb{Z}[\sqrt{2}]$, but needs one more step.]

Proof. As in class use $d(x)=|N(x)|$ and we need to show that for any rationals a, b with $x=a+b \sqrt{3} \in$ $\mathbb{Q}[\sqrt{3}]$, we can find $q=m+n \sqrt{3} \in \mathbb{Z}[\sqrt{3}]$ such that

$$
|N(x-q)|<1
$$

This is equivalent to $\mid N\left((a-m)+(b-n) \sqrt{3}\left|=\left|(a-m)^{2}-3(b-n)^{2}\right|<1\right.\right.$. Take m to be the closest integer to a and n the closest integer to b. Then $|a-m|,|b-n| \leq 1 / 2$ and so

$$
\left|(a-m)^{2}-3(b-n)^{2}\right| \leq|a-m|^{2}+3|b-n|^{2} \leq 1 / 4+3 / 4=1
$$

and we just need to rule out the case when $|N(x-q)|=1$. But the only way to get equality is if $|a-m|=|b-n|=1 / 2$ and then

$$
|N(x-q)|=\left|(a-m)^{2}-3(b-n)^{2}\right|=|1 / 4-3 / 4|=1 / 2<1
$$

The proposition in class then implies that $d(x)$ is a Euclidean function.
3. Consider the Euclidean domain $R=\mathbb{Z}[i]$. Find the gcd of $x=21+47 i$ and $y=62+9 i$ using the Euclidean algorithm.

Proof. Here is a sequence of divisions with remainder

$$
\begin{aligned}
9 i+62 & =(47 i+21)(-i+1)+(-17 i-6) \\
47 i+21 & =(-17 i-6)(-3)+(-4 i+3) \\
-17 i-6 & =(-4 i+3)(-3 i+2)
\end{aligned}
$$

with $N(47 i+21)>N(-17 i-6)>N(-4 i+3)$. We conclude that $(x, y)=-4 i+3$ as it is the last nonzero residue.
The way to get these is to follow the procedure from class. For example

$$
\frac{9 i+62}{47 i+21}=-\frac{109}{106} i+\frac{69}{106}
$$

and the closest element of $\mathbb{Z}[i]$ to this is $-i+1$.
4. Consider the Euclidean domain $R=\mathbb{Z}[\sqrt{2}]$ and let $x=36-19 \sqrt{2}$ and $y=35-31 \sqrt{2}$. Compute the Bézout identity: find the $\operatorname{gcd} d=(x, y)$ and two elements $p, q \in \mathbb{Z}[\sqrt{2}]$ such that $d=x p+y q$.

Proof. This is basically the same as for the previous problem but now finding the linear combination is required. Here's the sequence of divisions with remainder together with the linear combinations.

$$
\begin{aligned}
& -19 \sqrt{2}+36=(-31 \sqrt{2}+35)(-\sqrt{2}-1)+(-15 \sqrt{2}+12) \quad-15 \sqrt{2}+9=y+x(\sqrt{2}+1) \\
& -31 \sqrt{2}+35=(-15 \sqrt{2}+9)(-\sqrt{2}+1)+(-7 \sqrt{2}-4) \quad-7 \sqrt{2}-4=y(\sqrt{2}-1)+2 x \\
& -15 \sqrt{2}+9=(-7 \sqrt{2}-4)(-2 \sqrt{2}+3)-(2 \sqrt{2}+7) \quad-(2 \sqrt{2}+7)=y(-5 \sqrt{2}+8)+x(5 \sqrt{2}-5)
\end{aligned}
$$

so $(x, y)=-2 \sqrt{2}-7=y(-5 \sqrt{2}+8)+x(5 \sqrt{2}-5)$.
5. Show that $2,3,1 \pm \sqrt{-5}$ are irreducible in the domain $\mathbb{Z}[\sqrt{-5}]$, but they are not prime. Conclude that $\mathbb{Z}[\sqrt{-5}]$ is not a Euclidean domain.

Proof. Suppose 2 is reducible, i.e., we can write $2=x y$ with x, y not units. Then $4=N(2)=N(x) N(y)$ where $N(x), N(y) \neq 1$. This implies that $N(x)=N(y)=2$. Writing $x=a+b \sqrt{-5}$ we'd need $2=N(x)=a^{2}+5 b^{2}$. This is impossible as 2 is not a quadratic residue $\bmod 5$.

Similarly, if 3 were reducible we'd have $3=x y$ with $N(x)=3$ in which case $N(x)=N(a+b \sqrt{-5})=$ $a^{2}+5 b^{2}=3$. This, again, is impossible as 3 is not a quadratic residue $\bmod 5$.
Now if $1 \pm \sqrt{-5}$ were reducible then $1 \pm \sqrt{-5}=x y$ with $N(x), N(y) \neq 1$. But then $N(x) N(y)=$ $N(1 \pm \sqrt{-5})=6$ so $N(x)$ and $N(y)$ are either 2 and 3 or 3 and 2 . As we already showed that $N(x)$ can never be 2 or 3 we get another contradiction.
Finally, if $\mathbb{Z}[\sqrt{-5}]$ were a Euclidean domain then $2,3,1 \pm \sqrt{-5}$ would be primes. But $6=2 \cdot 3=$ $(1+\sqrt{-5})(1-\sqrt{-5})$ so $2 \mid(1+\sqrt{-5})(1-\sqrt{-5})$. As 2 is a prime it follows that $2 \mid 1+\sqrt{-5}$ or $2 \mid 1-\sqrt{-5}$. This would imply that one of $1 \pm \sqrt{-5}$ can be written as $2(a+b \sqrt{-5})$ which is impossible as 1 is odd and $2 a$ is not.
6. Show that if a prime integer p is $\equiv \pm 3(\bmod 8)$ then p is a prime element of the domain $\mathbb{Z}[\sqrt{2}]$.

Proof. Suppose p is not a prime element of $\mathbb{Z}[\sqrt{2}]$. As we already know that $\mathbb{Z}[\sqrt{2}]$ is Euclidean from class, p cannot be irreducible as in a Euclidean domain every irreducible is also a prime. Thus $p=x y$ where x and y are not units so $p^{2}=N(p)=N(x) N(y)$. Since x, y are not units it follows that $N(x), N(y) \neq \pm 1$ and so either $N(x)=N(y)=p$ or $N(x)=N(y)=-p$.
Write $x=a+b \sqrt{2}$. Then $\pm p=N(a+b \sqrt{2})=a^{2}-2 b^{2}$. If $p \mid b$ then immediately $p \mid a$ and so $p^{2} \mid a^{2}-2 b^{2}= \pm p$ which is impossible. Thus $a^{2}-2 b^{2} \equiv 0(\bmod p)$ yields $(a / b)^{2} \equiv 2(\bmod p)$. This is impossible as if $p \equiv 3(\bmod 8),\left(\frac{2}{p}\right)=-1$.
7. Consider the set $\mathbb{Z}[\sqrt[3]{2}]=\{a+b \sqrt[3]{2}+c \sqrt[3]{4} \mid a, b, c \in \mathbb{Z}\}$ as a subset of \mathbb{R}.
(a) Show that $\mathbb{Z}[\sqrt[3]{2}]$ is a domain. [Hint: check if it is closed under,,$+- \cdot$.
(b) Take for granted that $N(a+b \sqrt[3]{2}+c \sqrt[3]{4})=a^{3}+2 b^{3}+4 c^{3}-6 a b c$ satisfies the following two properties: i. $N(x y)=N(x) N(y)$ for all x, y of the form $a+b \sqrt[3]{2}+c \sqrt[3]{4}$ and ii. $N(x)=0$ if and only if $x=0$ (this is a boring exercise). If $a, b, c \in(0,1 / 2)$ show that $N(a+b \sqrt[3]{2}+c \sqrt[3]{4}) \in(-1,1)$.

Proof. (a) This subset of \mathbb{C} is clearly closed under + and - and it clearly contains 0 and 1 . Also note that

$$
(a+b \sqrt[3]{2}+c \sqrt[3]{4})(x+y \sqrt[3]{2}+z \sqrt[3]{4})=(a x+2 b z+2 c y)+(a y+b x+2 x z) \sqrt[3]{2}+(a z+b y+c x) \sqrt[3]{4}
$$

and so the set is closed under multiplications. Therefore it is a domain.
(b) If $0<a, b, c<1 / 2$ then

$$
N(a+b \sqrt[3]{2}+c \sqrt[3]{4})=a^{2}+2 b^{3}+4 c^{3}-6 a b c<a^{3}+2 b^{3}+4 c^{3}<7 / 8<1
$$

and

$$
N(a+b \sqrt[3]{2}+c \sqrt[3]{4})=a^{2}+2 b^{3}+4 c^{3}-6 a b c>-6 a b c>-6 / 8>-1
$$

