
Math 40520 Theory of Number

Homework 10

Due Wednesday, 2015-12-09, in class

Do 5 of the following 8 problems. Please only attempt 5 because I will only grade 5.

1. For a positive integer n let f(n)#{(x, y, z, t) ∈ Z4 | n = xyzt} the number of ways to write n as an
ordered product of 4 integers. For example 12 can be written in 4 ways as 12 · 1 · 1 · 1, in 12 ways as
6 · 2 · 1 · 1, in 12 ways as 4 · 3 · 1 · 1 and 12 ways as 3 · 2 · 2 · 1 for a total of f(12) = 40.

(a) Show that Df (s) = ζ(s)4.

(b) Show that

f(n) =
∑
d2|n

τ(n/d2)2

(For example f(12) = 40 = τ(12)2 + τ(3)2 = 62 + 22.) [Hint: Compare the Dirichlet series of τ2

and f .]

Proof. (a)

ζ(s)4 = (
∑ 1

ns
)4 =

∑
a,b,c,d≥1

1

(abcd)s
=
∑
n≥1

∑
abcd=n

1

ns
=
∑
n≥1

f(n)

ns
= Df (s)

(b) From the previous homework you already know that Dτ2 = ζ(s)4/ζ(2s) so part (a) implies that

Df (s) = ζ(s)4 = ζ(2s)Dτ2(s)

which implies that ∑ f(n)

ns
=
∑ 1

a2s

∑ τ(b)2

bs
=
∑
a,b

τ(b)2

(a2b)s
=
∑
n≥1

∑
a2b=n

τ(b)2

ns

which immediately gives

f(n) =
∑
a2b=n

τ(b)2 =
∑
d2|n

τ(n/d2)2

2. Show that Z[
√

3] is a Euclidean domain. [Hint: similar to Z[
√

2], but needs one more step.]

Proof. As in class use d(x) = |N(x)| and we need to show that for any rationals a, b with x = a+b
√

3 ∈
Q[
√

3], we can find q = m+ n
√

3 ∈ Z[
√

3] such that

|N(x− q)| < 1

1



This is equivalent to |N((a−m) + (b− n)
√

3| = |(a−m)2 − 3(b− n)2| < 1. Take m to be the closest
integer to a and n the closest integer to b. Then |a−m|, |b− n| ≤ 1/2 and so

|(a−m)2 − 3(b− n)2| ≤ |a−m|2 + 3|b− n|2 ≤ 1/4 + 3/4 = 1

and we just need to rule out the case when |N(x − q)| = 1. But the only way to get equality is if
|a−m| = |b− n| = 1/2 and then

|N(x− q)| = |(a−m)2 − 3(b− n)2| = |1/4− 3/4| = 1/2 < 1

The proposition in class then implies that d(x) is a Euclidean function.

3. Consider the Euclidean domain R = Z[i]. Find the gcd of x = 21 + 47i and y = 62 + 9i using the
Euclidean algorithm.

Proof. Here is a sequence of divisions with remainder

9i+ 62 = (47i+ 21)(−i+ 1) + (−17i− 6)

47i+ 21 = (−17i− 6)(−3) + (−4i+ 3)

−17i− 6 = (−4i+ 3)(−3i+ 2)

with N(47i + 21) > N(−17i − 6) > N(−4i + 3). We conclude that (x, y) = −4i + 3 as it is the last
nonzero residue.

The way to get these is to follow the procedure from class. For example

9i+ 62

47i+ 21
= −109

106
i+

69

106

and the closest element of Z[i] to this is −i+ 1.

4. Consider the Euclidean domain R = Z[
√

2] and let x = 36 − 19
√

2 and y = 35 − 31
√

2. Compute the
Bézout identity: find the gcd d = (x, y) and two elements p, q ∈ Z[

√
2] such that d = xp+ yq.

Proof. This is basically the same as for the previous problem but now finding the linear combination
is required. Here’s the sequence of divisions with remainder together with the linear combinations.

−19
√

2 + 36 = (−31
√

2 + 35)(−
√

2− 1) + (−15
√

2 + 12) −15
√

2 + 9 = y + x(
√

2 + 1)

−31
√

2 + 35 = (−15
√

2 + 9)(−
√

2 + 1) + (−7
√

2− 4) −7
√

2− 4 = y(
√

2− 1) + 2x

−15
√

2 + 9 = (−7
√

2− 4)(−2
√

2 + 3)− (2
√

2 + 7) −(2
√

2 + 7) = y(−5
√

2 + 8) + x(5
√

2− 5)

−7
√

2− 4 = −(2
√

2 + 7) ·
√

2

so (x, y) = −2
√

2− 7 = y(−5
√

2 + 8) + x(5
√

2− 5).

5. Show that 2, 3, 1±
√
−5 are irreducible in the domain Z[

√
−5], but they are not prime. Conclude that

Z[
√
−5] is not a Euclidean domain.

Proof. Suppose 2 is reducible, i.e., we can write 2 = xy with x, y not units. Then 4 = N(2) = N(x)N(y)
where N(x), N(y) 6= 1. This implies that N(x) = N(y) = 2. Writing x = a + b

√
−5 we’d need

2 = N(x) = a2 + 5b2. This is impossible as 2 is not a quadratic residue mod 5.
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Similarly, if 3 were reducible we’d have 3 = xy with N(x) = 3 in which case N(x) = N(a+ b
√
−5) =

a2 + 5b2 = 3. This, again, is impossible as 3 is not a quadratic residue mod 5.

Now if 1 ±
√
−5 were reducible then 1 ±

√
−5 = xy with N(x), N(y) 6= 1. But then N(x)N(y) =

N(1 ±
√
−5) = 6 so N(x) and N(y) are either 2 and 3 or 3 and 2. As we already showed that N(x)

can never be 2 or 3 we get another contradiction.

Finally, if Z[
√
−5] were a Euclidean domain then 2, 3, 1 ±

√
−5 would be primes. But 6 = 2 · 3 =

(1 +
√
−5)(1 −

√
−5) so 2 | (1 +

√
−5)(1 −

√
−5). As 2 is a prime it follows that 2 | 1 +

√
−5 or

2 | 1−
√
−5. This would imply that one of 1±

√
−5 can be written as 2(a+ b

√
−5) which is impossible

as 1 is odd and 2a is not.

6. Show that if a prime integer p is ≡ ±3 (mod 8) then p is a prime element of the domain Z[
√

2].

Proof. Suppose p is not a prime element of Z[
√

2]. As we already know that Z[
√

2] is Euclidean from
class, p cannot be irreducible as in a Euclidean domain every irreducible is also a prime. Thus p = xy
where x and y are not units so p2 = N(p) = N(x)N(y). Since x, y are not units it follows that
N(x), N(y) 6= ±1 and so either N(x) = N(y) = p or N(x) = N(y) = −p.
Write x = a + b

√
2. Then ±p = N(a + b

√
2) = a2 − 2b2. If p | b then immediately p | a and so

p2 | a2 − 2b2 = ±p which is impossible. Thus a2 − 2b2 ≡ 0 (mod p) yields (a/b)2 ≡ 2 (mod p). This is

impossible as if p ≡ 3 (mod 8),

(
2

p

)
= −1.

7. Consider the set Z[ 3
√

2] = {a+ b 3
√

2 + c 3
√

4 | a, b, c ∈ Z} as a subset of R.

(a) Show that Z[ 3
√

2] is a domain. [Hint: check if it is closed under +,−, ·.]
(b) Take for granted that N(a + b 3

√
2 + c 3

√
4) = a3 + 2b3 + 4c3 − 6abc satisfies the following two

properties: i. N(xy) = N(x)N(y) for all x, y of the form a+ b 3
√

2 + c 3
√

4 and ii. N(x) = 0 if and
only if x = 0 (this is a boring exercise). If a, b, c ∈ (0, 1/2) show that N(a+ b 3

√
2+c 3

√
4) ∈ (−1, 1).

Proof. (a) This subset of C is clearly closed under + and − and it clearly contains 0 and 1. Also note
that

(a+ b
3
√

2 + c
3
√

4)(x+ y
3
√

2 + z
3
√

4) = (ax+ 2bz + 2cy) + (ay + bx+ 2xz)
3
√

2 + (az + by + cx)
3
√

4

and so the set is closed under multiplications. Therefore it is a domain.

(b) If 0 < a, b, c < 1/2 then

N(a+ b
3
√

2 + c
3
√

4) = a2 + 2b3 + 4c3 − 6abc < a3 + 2b3 + 4c3 < 7/8 < 1

and
N(a+ b

3
√

2 + c
3
√

4) = a2 + 2b3 + 4c3 − 6abc > −6abc > −6/8 > −1
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