Graduate Algebra Homework 1

Due 2015-01-28

- 1. Let R be a commutative ring. An enhanced R-module is a pair (M, f) of an R-module M and an endomorphism $f \in \operatorname{End}_R(M)$. A homomorphism of enhanced R-modules $\phi : (M, f) \to (N, g)$ is an R-module homomorphism $\phi : M \to N$ such that $\phi \circ f = g \circ \phi$. Define $(M, f) \oplus (N, g) = (M \oplus N, f \oplus g)$, $(M, f) \otimes_R (N, g) = (M \otimes_R N, f \otimes g)$, $\operatorname{Sym}^k(M, f) = (\operatorname{Sym}^k M, \operatorname{Sym}^k f)$ and $\wedge^k(M, f) = (\wedge^k M, \wedge^k f)$.
 - (a) Let (M, f) and (N, g) as above. Show that $\wedge^k (M \oplus N, f \oplus g) \cong \bigoplus_{i+j=k} \wedge^i (M, f) \otimes_R \wedge^j (N, g).$
 - (b) (Optional) The analogous statement for Sym.
- 2. Let $V = \mathbb{C}^2$ and $f \in \operatorname{End}_{\mathbb{C}}(V)$ given by the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{C})$. For an explicit basis of $\operatorname{Sym}^2(V)$ of your choice find the matrix representing $\operatorname{Sym}^2(f)$.
- 3. Let $A_1, \ldots, A_m \in M_{n \times n}(\mathbb{C})$ be pair-wise commuting matrices, not all 0.
 - (a) Show that the subring $R = \mathbb{C}[A_1, \ldots, A_m]$ of $M_{n \times n}(\mathbb{C})$ is $R \cong \mathbb{C}[X_1, \ldots, X_m]/I$ for some proper ideal $I \subset \mathbb{C}[X_1, \ldots, X_m]$.
 - (b) Suppose $\mathfrak{m} = (X_1 \lambda_1, \dots, X_m \lambda_m)$ is a maximal ideal containing *I*. If $Q(X_1, \dots, X_m)$ is any polynomial, show that $Q(\lambda_1, \dots, \lambda_m)$ is an eigenvalue of $Q(A_1, \dots, A_m)$. (You may assume the so-called weak nullstellensatz which states that every maximal ideal of $\mathbb{C}[X_1, \dots, X_m]$ is of the form $(X_1 \lambda_1, \dots, X_m \lambda_m)$; you showed this for m = 2 last semester.)
- 4. Let $A \in M_{2 \times 2}(\mathbb{C})$.
 - (a) Let $f(x) \in \mathbb{C}[\![X]\!]$ be an absolutely converging power series. Show that f(A) converges to an element of $M_{2\times 2}(\mathbb{C})$. [The topology here is that of \mathbb{C}^4 .]
 - (b) Show that $\det(e^A) = e^{\operatorname{Tr} A}$.
 - (c) Show that $\sin^2(A) + \cos^2(A) = I_2$.
 - (d) (Optional) Conclude that if $\cos(A)$ is upper triangular with 1 on the diagonal then $\cos(A) = I_2$.
- 5. Let $A \in M_{n \times n}(F)$. Writing $V = F^n$ as a module over F[X] via $P(X) \cdot v := P(A)v$ we showed in class that $V \cong F[X]/(P_1(X)) \oplus \cdots \oplus F[X]/(P_k(X))$ for polynomials $P_i(X) \in F[X]$.
 - (a) Show that the characteristic polynomial of the matrix

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ & \ddots & & \vdots \\ & & & 1 & -a_{d-1} \end{pmatrix}$$

is $X^d + a_{d-1}X^{d-1} + \dots + a_1X + a_0$. (b) Deduce that $P_A(X) = P_1(X) \cdots P_k(X)$.