Graduate Algebra
Homework 1

Due 2015-01-28

1. Let R be a commutative ring. An enhanced R-module is a pair (M, f) of an R-module M and an
endomorphism f € Endr(M). A homomorphism of enhanced R-modules ¢ : (M, f) — (N,g) is an
R-module homomorphism ¢ : M — N such that ¢o f = go¢. Define (M, f)®(N,g9) = (MEN, fdg),
(M, f)@r (N,g) = (M &g N, f ©g), Sym"(M, ) = (Sym" M, Sym" f) and AF(M, f) = (A\"M, AF f).

(a) Let (M, f) and (N, g) as above. Show that

NMeN, feg) = @ N(M, f)orN(N,g)
i+ji=k

(b) (Optional) The analogous statement for Sym.

Proof. Let (m;) be a basis for M of rank r and (n;) be a basis for NV of rank s. Then (v;) = (m;)U(n;)
is a basis for M @ N. We know that a basis for A¥(M @ N) is formed by expressions v;, A ... Aw;, for
1< <o < Sr—l—swherevij is either m; or n;.

Suppose this expression has a basis vectors from M and b = k — a basis vectors from N. Then
Vi, Ao A, =mg Ao AmG, and vi, AL A Y, =1y, AL Ang, and so we get an isomorphism

/\k(M@N): <Ui1 /\.../\’Uik>
=({miy, A...AM ) A (g, A AN )la+b=k)
=((mi Ao AM ) Q@ (ngy A Ang)la+b=E)
e @ (mil/\.../\mia>®<njl/\.../\njb>

a+b=k

P rMer'N

a+b=k

We can replace A by ® since there is no ambiguity on the order.

We only need to keep track of the homomorphism AF(f @ g) under this decomposition. Note, however,
that

A (F@g)(miy Ao Amg, ) A (g, A Ang) = A f(ma A Amg,) ANPg(ng, Ao Ang,)
€ AM @r \°N

Thus A*(f@g) invaries each subspace A>M ®@pr A’ N and on this piece it acts as A f @A g as desired. [

2. Let V.= C? and f € Endc(V) given by the matrix (Ccl 2) € Msx2(C). For an explicit basis of

Sym?(V) of your choice find the matrix representing Sym?(f).



Proof. Write f(e1) = aey + beg and f(ez) = ce; + deg. Take €3, e1e2, €3 as a basis of Sym2 V. Then

Sym? f(e?) = (f(e1))? = (aey + bey)? = a%e? + 2abeey + b2e2
Sym? f(erea) = f(e1)f(ez) = (aey + bea)(ceq + dey) = ace? + (ad + be)eyey + bde3
Sym? f(e3) = (f(e2))? = (ce1 + dea)* = c2e? + 2cdeseq + d?e3

and so the matrix is
a? 2ab b2

Sym® f = |ac ad+bc bd
c? 2cd d?

3. Let Ay,..., A € My,xn(C) be pair-wise commuting matrices, not all 0.
(a) Show that the subring R = C[A4, ..., 4] of Myyn(C) is R = C[Xq,...,X;]/I for some proper
ideal I C C[X1, ..., Xm)].

(b) Suppose m = (X7 — Ay,..., X;n — A is a maximal ideal containing I. If Q(Xy,..., X,,) is any
polynomial, show that Q(A1,...,\n,) is an eigenvalue of Q(Ay,..., A;). (You may assume the
so-called weak nullstellensatz which states that every maximal ideal of C[X7,...,X,,] is of the
form (X1 — A1,..., X, — A\m); you showed this for m = 2 last semester.)

Proof. (a): Consider C[X1,...,Xm] = M,uxn(C) sending X; to A;. This yields a ring homomorphism
and [ is the kernel of this homomorphism.

(b): Let m : C[A1,...,An] = C[X1,...,X;n]/m = C be the natural projection map. Let Py be
the characteristic polynomial of Q(Ai,...,A,). Then S = Po(Q(X1,...,Xm)) € I by Cayley-
Hamilton. Thus 7(S) = 7(0) = 0 and so # € m which implies that S(A1,..., Ay) = 0. We deduce that
Q(M1, ..., A\y) is an eigenvalue, being a root of Pg.

O

4. Let A€ M2><2((C).

(a) Let f(x) € C[X] be an absolutely converging power series. Show that f(A) converges to an
element of Myy2(C). [The topology here is that of C*.]

(b) Show that det(e?) = T 4.

(c) Show that sin®(A) 4 cos?(A) = I,.

(d) (Optional) Conclude that if cos(A) is upper triangular with 1 on the diagonal then cos(A) = Is.
Proof. (a): If P(X) is a polynomial then P(SAS™!) = SP(A)S~!. Let B be the Jordan canonical
form of A with A = SBS~!. Either B is diagonal of the form (/\1 )\2) or B= (A /1\)

In the first case note that P(A) = SP(B)S~! =S <P(>\1) P(A2)> S~!and so f(A) = Sf(B)S™! =
S <f()\1) f(>\2)) converges.

n o P\ n)\nfl P! )\
In the second case, suppose f(z) = > a,z™. Then B™ = \n and so P(B) = )\ .
Since f(x) converges absolutely it follows that f’(z) converges absolutely and so we have f(A4 ) =

Sf(B)S-t=§ (f()\) J}'((;\)))



(b): Let B be the Jordan form of A. Then dete? = det SeZS~! = det e = eMerz = eMithe = Tr4
from our explicit formula for the characteristic polynomial of A.

sin(A1)

(c): If A is equivalent to B diagonal then sin(A4) = S ) S~1 and similarly for cos(A).

sin(Ag
Thus sin?(A) + cos?(A) = SIS~ = I,. When A ~ ()\ }\) then sin(A) = S <sm()\) (sjlor?((f\\D S—1
and similarly for cos(A4). Again the formula is immediate to check.

(d): If cos(A) = 1z then cos?(A) = L 2:8) and so sin?(A) = (0 2:0). But then sin?(A) has

1) 1 0

eigenvalues 0,0 and so sin(A) has eigenvalues 0,0. But then the characteristic polynomial of sin(A) is
X2 and Cayley-Hamilton implies sin?(A) = 05 so 2 = 0 as desired. O

. Let A € My, xn(F). Writing V = F™ as a module over F[X] via P(X)-v := P(A)v we showed in class
that V = F[X]/(P (X)) @ - ® F[X]/(Pr(X)) for polynomials P;(X) € F[X].

(a) Show that the characteristic polynomial of the matrix

0 0 0 —ag

1 0 O —aq

0 1 0 —asg
1 —ag

is X+ ag_ 1 X+ +a1X + ag.
(b) Deduce that P4(X) = P1(X)--- Pu(X).

Proof. (a): We'll prove by induction. The case d = 1 is trivial. We compute

X 0 0 agp

1 X ... 0 Ao o

0o -1 ... 0 as - X . ) + (—1)d_1a0 det(—1I4-1)
1 X +ad71 -1 X+ad,1

= XX 4ag X244 ay) + ao
:Xd—l—ad,le_l—l----—i-alX—i-ao

(b): We saw that A acting on V is the same as multiplication by X on @F[X]/(P;(X)). Let m; be
multiplication by X on F[X]/(P;(X)). Then A = &m; and so P4(X) = [] Pn,(X). Also from class
we know that if P;(X) = X9 +ag_1X% 1 4 ... 4 ag then multiplication by X on F[X]/(P;(X)) has
matrix the one given in part (a), which has characteristic polynomial P;(X). Thus P,,,(X) = P;(X)
and the result follows. O



