Graduate Algebra Homework 1

Due 2015-01-28

- 1. Let R be a commutative ring. An enhanced R-module is a pair (M, f) of an R-module M and an endomorphism $f \in \operatorname{End}_R(M)$. A homomorphism of enhanced R-modules $\phi : (M, f) \to (N, g)$ is an R-module homomorphism $\phi : M \to N$ such that $\phi \circ f = g \circ \phi$. Define $(M, f) \oplus (N, g) = (M \oplus N, f \oplus g),$ $(M, f) \otimes_R (N, g) = (M \otimes_R N, f \otimes g),$ $\operatorname{Sym}^k(M, f) = (\operatorname{Sym}^k M, \operatorname{Sym}^k f)$ and $\wedge^k(M, f) = (\wedge^k M, \wedge^k f).$
 - (a) Let (M, f) and (N, g) as above. Show that

$$\wedge^k (M \oplus N, f \oplus g) \cong \bigoplus_{i+j=k} \wedge^i (M, f) \otimes_R \wedge^j (N, g)$$

(b) (Optional) The analogous statement for Sym.

Proof. Let (m_i) be a basis for M of rank r and (n_j) be a basis for N of rank s. Then $(v_i) = (m_i) \cup (n_j)$ is a basis for $M \oplus N$. We know that a basis for $\wedge^k (M \oplus N)$ is formed by expressions $v_{i_1} \wedge \ldots \wedge v_{i_k}$ for $1 \leq i_1 < \ldots < i_k \leq r + s$ where v_{i_j} is either m_i or n_j .

Suppose this expression has a basis vectors from M and b = k - a basis vectors from N. Then $v_{i_1} \wedge \ldots \wedge v_{i_a} = m_{i_1} \wedge \ldots \wedge m_{i_a}$ and $v_{i_{a+1}} \wedge \ldots \wedge v_{i_k} = n_{j_1} \wedge \ldots \wedge n_{j_b}$ and so we get an isomorphism

$$\wedge^{k}(M \oplus N) = \langle v_{i_{1}} \wedge \ldots \wedge v_{i_{k}} \rangle$$

= $\langle (m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}) \wedge (n_{j_{1}} \wedge \ldots \wedge n_{j_{b}}) | a + b = k \rangle$
= $\langle (m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}) \otimes (n_{j_{1}} \wedge \ldots \wedge n_{j_{b}}) | a + b = k \rangle$
= $\bigoplus_{a+b=k} \langle m_{i_{1}} \wedge \ldots \wedge m_{i_{a}} \rangle \otimes \langle n_{j_{1}} \wedge \ldots \wedge n_{j_{b}} \rangle$
= $\bigoplus_{a+b=k} \wedge^{a} M \otimes \wedge^{b} N$

We can replace \wedge by \otimes since there is no ambiguity on the order. We only need to keep track of the homomorphism $\wedge^k (f \oplus g)$ under this decomposition. Note, however, that

$$\wedge^{k}(f \oplus g)(m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}) \wedge (n_{j_{1}} \wedge \ldots \wedge n_{j_{b}}) = \wedge^{a} f(m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}) \wedge \wedge^{b} g(n_{j_{1}} \wedge \ldots \wedge n_{j_{b}})$$
$$\in \wedge^{a} M \otimes_{B} \wedge^{b} N$$

Thus $\wedge^k (f \oplus g)$ invaries each subspace $\wedge^a M \otimes_R \wedge^b N$ and on this piece it acts as $\wedge^a f \otimes \wedge^b g$ as desired. \Box

2. Let $V = \mathbb{C}^2$ and $f \in \operatorname{End}_{\mathbb{C}}(V)$ given by the matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2 \times 2}(\mathbb{C})$. For an explicit basis of $\operatorname{Sym}^2(V)$ of your choice find the matrix representing $\operatorname{Sym}^2(f)$.

Proof. Write $f(e_1) = ae_1 + be_2$ and $f(e_2) = ce_1 + de_2$. Take e_1^2, e_1e_2, e_2^2 as a basis of Sym² V. Then

$$Sym^{2} f(e_{1}^{2}) = (f(e_{1}))^{2} = (ae_{1} + be_{2})^{2} = a^{2}e_{1}^{2} + 2abe_{1}e_{2} + b^{2}e_{2}^{2}$$

$$Sym^{2} f(e_{1}e_{2}) = f(e_{1})f(e_{2}) = (ae_{1} + be_{2})(ce_{1} + de_{2}) = ace_{1}^{2} + (ad + bc)e_{1}e_{2} + bde_{2}^{2}$$

$$Sym^{2} f(e_{2}^{2}) = (f(e_{2}))^{2} = (ce_{1} + de_{2})^{2} = c^{2}e_{1}^{2} + 2cde_{1}e_{2} + d^{2}e_{2}^{2}$$

and so the matrix is

$$\operatorname{Sym}^{2} f = \begin{pmatrix} a^{2} & 2ab & b^{2} \\ ac & ad + bc & bd \\ c^{2} & 2cd & d^{2} \end{pmatrix}$$

3. Let $A_1, \ldots, A_m \in M_{n \times n}(\mathbb{C})$ be pair-wise commuting matrices, not all 0.

- (a) Show that the subring $R = \mathbb{C}[A_1, \ldots, A_m]$ of $M_{n \times n}(\mathbb{C})$ is $R \cong \mathbb{C}[X_1, \ldots, X_m]/I$ for some proper ideal $I \subset \mathbb{C}[X_1, \ldots, X_m]$.
- (b) Suppose $\mathfrak{m} = (X_1 \lambda_1, \dots, X_m \lambda_m)$ is a maximal ideal containing *I*. If $Q(X_1, \dots, X_m)$ is any polynomial, show that $Q(\lambda_1, \dots, \lambda_m)$ is an eigenvalue of $Q(A_1, \dots, A_m)$. (You may assume the so-called weak nullstellensatz which states that every maximal ideal of $\mathbb{C}[X_1, \dots, X_m]$ is of the form $(X_1 \lambda_1, \dots, X_m \lambda_m)$; you showed this for m = 2 last semester.)

Proof. (a): Consider $\mathbb{C}[X_1, \ldots, X_m] \to M_{n \times n}(\mathbb{C})$ sending X_i to A_i . This yields a ring homomorphism and I is the kernel of this homomorphism.

(b): Let $\pi : \mathbb{C}[A_1, \ldots, A_m] \to \mathbb{C}[X_1, \ldots, X_m]/\mathfrak{m} \cong \mathbb{C}$ be the natural projection map. Let P_Q be the characteristic polynomial of $Q(A_1, \ldots, A_m)$. Then $S = P_Q(Q(X_1, \ldots, X_m)) \in I$ by Cayley-Hamilton. Thus $\pi(S) = \pi(0) = 0$ and so $\pi \in \mathfrak{m}$ which implies that $S(\lambda_1, \ldots, \lambda_m) = 0$. We deduce that $Q(\lambda_1, \ldots, \lambda_m)$ is an eigenvalue, being a root of P_Q .

$$\square$$

- 4. Let $A \in M_{2 \times 2}(\mathbb{C})$.
 - (a) Let $f(x) \in \mathbb{C}[X]$ be an absolutely converging power series. Show that f(A) converges to an element of $M_{2\times 2}(\mathbb{C})$. [The topology here is that of \mathbb{C}^4 .]
 - (b) Show that $\det(e^A) = e^{\operatorname{Tr} A}$.
 - (c) Show that $\sin^2(A) + \cos^2(A) = I_2$.
 - (d) (Optional) Conclude that if $\cos(A)$ is upper triangular with 1 on the diagonal then $\cos(A) = I_2$.

Proof. (a): If P(X) is a polynomial then $P(SAS^{-1}) = SP(A)S^{-1}$. Let B be the Jordan canonical form of A with $A = SBS^{-1}$. Either B is diagonal of the form $\begin{pmatrix} \lambda_1 & \lambda_2 \end{pmatrix}$ or $B = \begin{pmatrix} \lambda & 1 \\ \lambda \end{pmatrix}$.

In the first case note that $P(A) = SP(B)S^{-1} = S\begin{pmatrix} P(\lambda_1) \\ P(\lambda_2) \end{pmatrix} S^{-1}$ and so $f(A) = Sf(B)S^{-1} = S\begin{pmatrix} f(\lambda_1) \\ f(\lambda_2) \end{pmatrix}$ converges.

In the second case, suppose $f(x) = \sum a_n x^n$. Then $B^n = \begin{pmatrix} \lambda^n & n\lambda^{n-1} \\ \lambda^n \end{pmatrix}$ and so $P(B) = \begin{pmatrix} P(\lambda) & P'(\lambda) \\ P(\lambda) \end{pmatrix}$. Since f(x) converges absolutely it follows that f'(x) converges absolutely and so we have $f(A) = Sf(B)S^{-1} = S\begin{pmatrix} f(\lambda) & f'(\lambda) \\ f(\lambda) \end{pmatrix}$. (b): Let B be the Jordan form of A. Then det $e^A = \det S e^B S^{-1} = \det e^B = e^{\lambda_1} e^{\lambda_2} = e^{\lambda_1 + \lambda_2} = e^{\operatorname{Tr} A}$ from our explicit formula for the characteristic polynomial of A.

(c): If A is equivalent to B diagonal then $\sin(A) = S \begin{pmatrix} \sin(\lambda_1) \\ \sin(\lambda_2) \end{pmatrix} S^{-1}$ and similarly for $\cos(A)$. Thus $\sin^2(A) + \cos^2(A) = SI_2S^{-1} = I_2$. When $A \sim \begin{pmatrix} \lambda & 1 \\ \lambda \end{pmatrix}$ then $\sin(A) = S \begin{pmatrix} \sin(\lambda) & \cos(\lambda) \\ & \sin(\lambda) \end{pmatrix} S^{-1}$ and similarly for $\cos(A)$. Again the formula is immediate to check.

(d): If $\cos(A) = \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix}$ then $\cos^2(A) = \begin{pmatrix} 1 & 2x \\ & 1 \end{pmatrix}$ and so $\sin^2(A) = \begin{pmatrix} 0 & -2x \\ & 0 \end{pmatrix}$. But then $\sin^2(A)$ has eigenvalues 0, 0 and so $\sin(A)$ has eigenvalues 0, 0. But then the characteristic polynomial of $\sin(A)$ is X^2 and Cayley-Hamilton implies $\sin^2(A) = 0_2$ so x = 0 as desired.

- 5. Let $A \in M_{n \times n}(F)$. Writing $V = F^n$ as a module over F[X] via $P(X) \cdot v := P(A)v$ we showed in class that $V \cong F[X]/(P_1(X)) \oplus \cdots \oplus F[X]/(P_k(X))$ for polynomials $P_i(X) \in F[X]$.
 - (a) Show that the characteristic polynomial of the matrix

$$\begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & \dots & 0 & -a_2 \\ & \ddots & & \vdots \\ & & 1 & -a_{d-1} \end{pmatrix}$$

is $X^d + a_{d-1}X^{d-1} + \dots + a_1X + a_0$.

(b) Deduce that $P_A(X) = P_1(X) \cdots P_k(X)$.

Proof. (a): We'll prove by induction. The case d = 1 is trivial. We compute

(b): We saw that A acting on V is the same as multiplication by X on $\oplus F[X]/(P_i(X))$. Let m_i be multiplication by X on $F[X]/(P_i(X))$. Then $A = \oplus m_i$ and so $P_A(X) = \prod P_{m_i}(X)$. Also from class we know that if $P_i(X) = X^d + a_{d-1}X^{d-1} + \cdots + a_0$ then multiplication by X on $F[X]/(P_i(X))$ has matrix the one given in part (a), which has characteristic polynomial $P_i(X)$. Thus $P_{m_i}(X) = P_i(X)$ and the result follows.