Graduate Algebra Homework 1

Due 2015-01-28

1. Let R be a commutative ring. An enhanced R-module is a pair (M, f) of an R-module M and an endomorphism $f \in \operatorname{End}_{R}(M)$. A homomorphism of enhanced R-modules $\phi:(M, f) \rightarrow(N, g)$ is an R-module homomorphism $\phi: M \rightarrow N$ such that $\phi \circ f=g \circ \phi$. Define $(M, f) \oplus(N, g)=(M \oplus N, f \oplus g)$, $(M, f) \otimes_{R}(N, g)=\left(M \otimes_{R} N, f \otimes g\right), \operatorname{Sym}^{k}(M, f)=\left(\operatorname{Sym}^{k} M, \operatorname{Sym}^{k} f\right)$ and $\wedge^{k}(M, f)=\left(\wedge^{k} M, \wedge^{k} f\right)$.
(a) Let (M, f) and (N, g) as above. Show that

$$
\wedge^{k}(M \oplus N, f \oplus g) \cong \bigoplus_{i+j=k} \wedge^{i}(M, f) \otimes_{R} \wedge^{j}(N, g)
$$

(b) (Optional) The analogous statement for Sym.

Proof. Let $\left(m_{i}\right)$ be a basis for M of rank r and $\left(n_{j}\right)$ be a basis for N of rank s. Then $\left(v_{i}\right)=\left(m_{i}\right) \cup\left(n_{j}\right)$ is a basis for $M \oplus N$. We know that a basis for $\wedge^{k}(M \oplus N)$ is formed by expressions $v_{i_{1}} \wedge \ldots \wedge v_{i_{k}}$ for $1 \leq i_{1}<\ldots<i_{k} \leq r+s$ where $v_{i_{j}}$ is either m_{i} or n_{j}.
Suppose this expression has a basis vectors from M and $b=k-a$ basis vectors from N. Then $v_{i_{1}} \wedge \ldots \wedge v_{i_{a}}=m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}$ and $v_{i_{a+1}} \wedge \ldots \wedge v_{i_{k}}=n_{j_{1}} \wedge \ldots \wedge n_{j_{b}}$ and so we get an isomorphism

$$
\begin{aligned}
\wedge^{k}(M \oplus N) & =\left\langle v_{i_{1}} \wedge \ldots \wedge v_{i_{k}}\right\rangle \\
& =\left\langle\left(m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}\right) \wedge\left(n_{j_{1}} \wedge \ldots \wedge n_{j_{b}}\right) \mid a+b=k\right\rangle \\
& =\left\langle\left(m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}\right) \otimes\left(n_{j_{1}} \wedge \ldots \wedge n_{j_{b}}\right) \mid a+b=k\right\rangle \\
& =\bigoplus_{a+b=k}\left\langle m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}\right\rangle \otimes\left\langle n_{j_{1}} \wedge \ldots \wedge n_{j_{b}}\right\rangle \\
& =\bigoplus_{a+b=k} \wedge^{a} M \otimes \wedge^{b} N
\end{aligned}
$$

We can replace \wedge by \otimes since there is no ambiguity on the order.
We only need to keep track of the homomorphism $\wedge^{k}(f \oplus g)$ under this decomposition. Note, however, that

$$
\begin{aligned}
\wedge^{k}(f \oplus g)\left(m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}\right) \wedge\left(n_{j_{1}} \wedge \ldots \wedge n_{j_{b}}\right) & =\wedge^{a} f\left(m_{i_{1}} \wedge \ldots \wedge m_{i_{a}}\right) \wedge \wedge^{b} g\left(n_{j_{1}} \wedge \ldots \wedge n_{j_{b}}\right) \\
& \in \wedge^{a} M \otimes_{R} \wedge^{b} N
\end{aligned}
$$

Thus $\wedge^{k}(f \oplus g)$ invaries each subspace $\wedge^{a} M \otimes_{R} \wedge^{b} N$ and on this piece it acts as $\wedge^{a} f \otimes \wedge^{b} g$ as desired.
2. Let $V=\mathbb{C}^{2}$ and $f \in \operatorname{End}_{\mathbb{C}}(V)$ given by the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2 \times 2}(\mathbb{C})$. For an explicit basis of $\operatorname{Sym}^{2}(V)$ of your choice find the matrix representing $\operatorname{Sym}^{2}(f)$.

Proof. Write $f\left(e_{1}\right)=a e_{1}+b e_{2}$ and $f\left(e_{2}\right)=c e_{1}+d e_{2}$. Take $e_{1}^{2}, e_{1} e_{2}, e_{2}^{2}$ as a basis of $\operatorname{Sym}^{2} V$. Then

$$
\begin{aligned}
\operatorname{Sym}^{2} f\left(e_{1}^{2}\right) & =\left(f\left(e_{1}\right)\right)^{2}=\left(a e_{1}+b e_{2}\right)^{2}=a^{2} e_{1}^{2}+2 a b e_{1} e_{2}+b^{2} e_{2}^{2} \\
\operatorname{Sym}^{2} f\left(e_{1} e_{2}\right) & =f\left(e_{1}\right) f\left(e_{2}\right)=\left(a e_{1}+b e_{2}\right)\left(c e_{1}+d e_{2}\right)=a c e_{1}^{2}+(a d+b c) e_{1} e_{2}+b d e_{2}^{2} \\
\operatorname{Sym}^{2} f\left(e_{2}^{2}\right) & =\left(f\left(e_{2}\right)\right)^{2}=\left(c e_{1}+d e_{2}\right)^{2}=c^{2} e_{1}^{2}+2 c d e_{1} e_{2}+d^{2} e_{2}^{2}
\end{aligned}
$$

and so the matrix is

$$
\operatorname{Sym}^{2} f=\left(\begin{array}{ccc}
a^{2} & 2 a b & b^{2} \\
a c & a d+b c & b d \\
c^{2} & 2 c d & d^{2}
\end{array}\right)
$$

3. Let $A_{1}, \ldots, A_{m} \in M_{n \times n}(\mathbb{C})$ be pair-wise commuting matrices, not all 0 .
(a) Show that the subring $R=\mathbb{C}\left[A_{1}, \ldots, A_{m}\right]$ of $M_{n \times n}(\mathbb{C})$ is $R \cong \mathbb{C}\left[X_{1}, \ldots, X_{m}\right] / I$ for some proper ideal $I \subset \mathbb{C}\left[X_{1}, \ldots, X_{m}\right]$.
(b) Suppose $\mathfrak{m}=\left(X_{1}-\lambda_{1}, \ldots, X_{m}-\lambda_{m}\right)$ is a maximal ideal containing I. If $Q\left(X_{1}, \ldots, X_{m}\right)$ is any polynomial, show that $Q\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is an eigenvalue of $Q\left(A_{1}, \ldots, A_{m}\right)$. (You may assume the so-called weak nullstellensatz which states that every maximal ideal of $\mathbb{C}\left[X_{1}, \ldots, X_{m}\right]$ is of the form $\left(X_{1}-\lambda_{1}, \ldots, X_{m}-\lambda_{m}\right)$; you showed this for $m=2$ last semester.)

Proof. (a): Consider $\mathbb{C}\left[X_{1}, \ldots, X_{m}\right] \rightarrow M_{n \times n}(\mathbb{C})$ sending X_{i} to A_{i}. This yields a ring homomorphism and I is the kernel of this homomorphism.
(b): Let $\pi: \mathbb{C}\left[A_{1}, \ldots, A_{m}\right] \rightarrow \mathbb{C}\left[X_{1}, \ldots, X_{m}\right] / \mathfrak{m} \cong \mathbb{C}$ be the natural projection map. Let P_{Q} be the characteristic polynomial of $Q\left(A_{1}, \ldots, A_{m}\right)$. Then $S=P_{Q}\left(Q\left(X_{1}, \ldots, X_{m}\right)\right) \in I$ by CayleyHamilton. Thus $\pi(S)=\pi(0)=0$ and so $\pi \in \mathfrak{m}$ which implies that $S\left(\lambda_{1}, \ldots, \lambda_{m}\right)=0$. We deduce that $Q\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is an eigenvalue, being a root of P_{Q}.
4. Let $A \in M_{2 \times 2}(\mathbb{C})$.
(a) Let $f(x) \in \mathbb{C} \llbracket X \rrbracket$ be an absolutely converging power series. Show that $f(A)$ converges to an element of $M_{2 \times 2}(\mathbb{C})$. [The topology here is that of \mathbb{C}^{4}.]
(b) Show that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{Tr} A}$.
(c) Show that $\sin ^{2}(A)+\cos ^{2}(A)=I_{2}$.
(d) (Optional) Conclude that if $\cos (A)$ is upper triangular with 1 on the diagonal then $\cos (A)=I_{2}$.

Proof. (a): If $P(X)$ is a polynomial then $P\left(S A S^{-1}\right)=S P(A) S^{-1}$. Let B be the Jordan canonical
 In the first case note that $P(A)=S P(B) S^{-1}=S\left(\begin{array}{ll}P\left(\lambda_{1}\right) & \\ & P\left(\lambda_{2}\right)\end{array}\right) S^{-1}$ and so $f(A)=S f(B) S^{-1}=$ $S\left(\begin{array}{ll}f\left(\lambda_{1}\right) & \\ & f\left(\lambda_{2}\right)\end{array}\right)$ converges.
In the second case, suppose $f(x)=\sum a_{n} x^{n}$. Then $B^{n}=\left(\begin{array}{cc}\lambda^{n} & n \lambda^{n-1} \\ & \lambda^{n}\end{array}\right)$ and so $P(B)=\left(\begin{array}{cc}P(\lambda) & P^{\prime}(\lambda) \\ & P(\lambda)\end{array}\right)$. Since $f(x)$ converges absolutely it follows that $f^{\prime}(x)$ converges absolutely and so we have $f(A)=$ $S f(B) S^{-1}=S\left(\begin{array}{ll}f(\lambda) & f^{\prime}(\lambda) \\ & f(\lambda)\end{array}\right)$.
(b): Let B be the Jordan form of A. Then $\operatorname{det} e^{A}=\operatorname{det} S e^{B} S^{-1}=\operatorname{det} e^{B}=e^{\lambda_{1}} e^{\lambda_{2}}=e^{\lambda_{1}+\lambda_{2}}=e^{\operatorname{Tr} A}$ from our explicit formula for the characteristic polynomial of A.
(c): If A is equivalent to B diagonal then $\sin (A)=S\left(\begin{array}{cc}\sin \left(\lambda_{1}\right) & \\ & \sin \left(\lambda_{2}\right)\end{array}\right) S^{-1}$ and similarly for $\cos (A)$. Thus $\sin ^{2}(A)+\cos ^{2}(A)=S I_{2} S^{-1}=I_{2}$. When $A \sim\left(\begin{array}{ll}\lambda & 1 \\ & \lambda\end{array}\right)$ then $\sin (A)=S\left(\begin{array}{cc}\sin (\lambda) & \cos (\lambda) \\ & \sin (\lambda)\end{array}\right) S^{-1}$ and similarly for $\cos (A)$. Again the formula is immediate to check.
(d): If $\cos (A)=\left(\begin{array}{ll}1 & x \\ & 1\end{array}\right)$ then $\cos ^{2}(A)=\left(\begin{array}{cc}1 & 2 x \\ & 1\end{array}\right)$ and so $\sin ^{2}(A)=\left(\begin{array}{cc}0 & -2 x \\ & 0\end{array}\right)$. But then $\sin ^{2}(A)$ has eigenvalues 0,0 and so $\sin (A)$ has eigenvalues 0,0 . But then the characteristic polynomial of $\sin (A)$ is X^{2} and Cayley-Hamilton implies $\sin ^{2}(A)=0_{2}$ so $x=0$ as desired.
5. Let $A \in M_{n \times n}(F)$. Writing $V=F^{n}$ as a module over $F[X]$ via $P(X) \cdot v:=P(A) v$ we showed in class that $V \cong F[X] /\left(P_{1}(X)\right) \oplus \cdots \oplus F[X] /\left(P_{k}(X)\right)$ for polynomials $P_{i}(X) \in F[X]$.
(a) Show that the characteristic polynomial of the matrix

$$
\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -a_{0} \\
1 & 0 & \ldots & 0 & -a_{1} \\
0 & 1 & \ldots & 0 & -a_{2} \\
& & \ddots & & \vdots \\
& & & 1 & -a_{d-1}
\end{array}\right)
$$

is $X^{d}+a_{d-1} X^{d-1}+\cdots+a_{1} X+a_{0}$.
(b) Deduce that $P_{A}(X)=P_{1}(X) \cdots P_{k}(X)$.

Proof. (a): We'll prove by induction. The case $d=1$ is trivial. We compute

$$
\begin{aligned}
\left|\begin{array}{ccccc}
X & 0 & \ldots & 0 & a_{0} \\
-1 & X & \ldots & 0 & a_{1} \\
0 & -1 & \ldots & 0 & a_{2} \\
& & \ddots & & \vdots \\
& & -1 & X+a_{d-1}
\end{array}\right| & =X \left\lvert\, \begin{array}{cccc}
X & \ldots & 0 & a_{1} \\
-1 & \ldots & 0 & a_{2} \\
& \ddots & & \vdots \\
& =X\left(X^{d-1}+a_{d-1} X^{d-2}+\cdots+a_{1}\right)+a_{0} \\
& =X^{d}+a_{d-1} X^{d-1}+\cdots+a_{1} X+a_{0}
\end{array}\right.,+(-1)^{d-1} a_{0} \operatorname{det}\left(-I_{d-1}\right) \\
&
\end{aligned}
$$

(b): We saw that A acting on V is the same as multiplication by X on $\oplus F[X] /\left(P_{i}(X)\right)$. Let m_{i} be multiplication by X on $F[X] /\left(P_{i}(X)\right)$. Then $A=\oplus m_{i}$ and so $P_{A}(X)=\prod P_{m_{i}}(X)$. Also from class we know that if $P_{i}(X)=X^{d}+a_{d-1} X^{d-1}+\cdots+a_{0}$ then multiplication by X on $F[X] /\left(P_{i}(X)\right)$ has matrix the one given in part (a), which has characteristic polynomial $P_{i}(X)$. Thus $P_{m_{i}}(X)=P_{i}(X)$ and the result follows.

