Graduate Algebra
 Homework 2

Due 2015-02-04

1. Let $A, B, C, D \in M_{n \times n}(\mathbb{C})$.
(a) Show that

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
& D
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(D)
$$

(b) If $C D=D C$ show that

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}(A D-B C)
$$

(c) (Optional) Suppose $A_{i, j} \in M_{n \times n}(\mathbb{C})$ for $1 \leq i, j \leq k$ are pairwise commuting matrices. Show that

$$
\operatorname{det}\left(A_{i, j}\right)=\operatorname{det}\left(\sum_{\sigma \in S_{k}} \varepsilon(\sigma) \prod_{i=1}^{k} A_{i, \sigma(i)}\right)
$$

2. Let V and W be F-vector spaces of dimensions a and b. Let $F \in \operatorname{End}_{F}(V)$ and $G \in \operatorname{End}_{F}(W)$.
(a) Show that

$$
\operatorname{det}(F \otimes G)=\operatorname{det}(F)^{b} \operatorname{det}(G)^{a}
$$

(b) If $F=\left(f_{i, j}\right)$ and $G=\left(g_{i, j}\right)$ for some bases of V and W, what is $F \otimes G$ for the tensor product basis of $V \otimes_{F} W$?
3. Let K be a field and v a discrete valuation on K. For $\alpha \in(1, \infty)$ recall that $|x|:=\alpha^{-v(x)}$.
(a) Show that every point in the interior of an open ball in this metric space is a center for the open ball.
(b) Show that every open ball in the metric space K is closed.
4. (a) Compute the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt{1997})$.
(b) Let $p>2$ be a prime. Compute the integral closure of $\mathbb{F}_{p}[t]$ in $\mathbb{F}_{p}(\sqrt{t+1})$.
5. Let R be a local integral domain which is not a field. Suppose that the maximal ideal \mathfrak{m} is principal and $\cap \mathfrak{m}^{n}=0$. Show that R is a discrete valuation ring.

