# Graduate Algebra <br> Homework 2 

Due 2015-02-04

1. Let $A, B, C, D \in M_{n \times n}(\mathbb{C})$.
(a) Show that

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
& D
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(D)
$$

(b) If $C D=D C$ show that

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\operatorname{det}(A D-B C)
$$

(c) (Optional) Suppose $A_{i, j} \in M_{n \times n}(\mathbb{C})$ for $1 \leq i, j \leq k$ are pairwise commuting matrices. Show that

$$
\operatorname{det}\left(A_{i, j}\right)=\operatorname{det}\left(\sum_{\sigma \in S_{k}} \varepsilon(\sigma) \prod_{i=1}^{k} A_{i, \sigma(i)}\right)
$$

Proof. (a): Consider $S$ such that $S A S^{-1}$ is upper triangular and $T$ such that $T D T^{-1}$ is upper triangular. Let $U=\left(\begin{array}{ll}S & \\ & T\end{array}\right)$. Then $U\left(\begin{array}{cc}A & B \\ & D\end{array}\right) U^{-1}=\left(\begin{array}{cc}S A S^{-1} & S B T^{-1} \\ & T D T^{-1}\end{array}\right)$ is upper triangular. The determinant of an upper triangular matrix is the product of the diagonal elements and so $\operatorname{det}\left(\begin{array}{ll}A & B \\ & D\end{array}\right)=\operatorname{det} U\left(\begin{array}{ll}A & B \\ & D\end{array}\right) U^{-1}=\operatorname{det} S A S^{-1} \operatorname{det} T D T^{-1}=\operatorname{det} A \operatorname{det} D$.
(b): Since $C D=D C$ we have

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
D & \\
-C & I_{2}
\end{array}\right)=\left(\begin{array}{cc}
A D-B C & B \\
& d
\end{array}\right)
$$

and so

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
D & \\
-C & I_{2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
A D-B C & B \\
& D
\end{array}\right)
$$

which implies

$$
\operatorname{det}\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \operatorname{det}(D) \operatorname{det}\left(I_{2}\right)=\operatorname{det}(A B-C D) \operatorname{det}(D)
$$

This implies the result when $\operatorname{det}(D) \neq 0$.
When $\operatorname{det}(D)=0$ note that for $z \in \mathbb{C}$ not an eigenvalue $\operatorname{det}\left(D-z I_{2}\right) \neq 0$. But $C$ still commutes with $D-z I_{2}$ and so

$$
\operatorname{det}\left(\begin{array}{cc}
A & B \\
C & D-z I_{2}
\end{array}\right)=\operatorname{det}\left(A\left(D-z I_{2}\right)-B C\right)
$$

Both LHS and RHS are polynomials in $z$ and the equality occurs for infinitely many values of $z$. Thus LHS and RHS are equal as polynomials. Plugging in $z=0$ yields the desired result.
2. Let $V$ and $W$ be $F$-vector spaces of dimensions $a$ and $b$. Let $F \in \operatorname{End}_{F}(V)$ and $G \in \operatorname{End}_{F}(W)$.
(a) Show that

$$
\operatorname{det}(F \otimes G)=\operatorname{det}(F)^{b} \operatorname{det}(G)^{a}
$$

(b) If $F=\left(f_{i, j}\right)$ and $G=\left(g_{i, j}\right)$ for some bases of $V$ and $W$, what is $F \otimes G$ for the tensor product basis of $V \otimes_{F} W$ ?

Proof. (a): Let $v_{i}$ be a basis of $V$ and $w_{j}$ a basis of $W$. Then $v_{i} \otimes w_{j}$ is a basis of $V \otimes_{F} W$. We compute

$$
\begin{aligned}
\operatorname{det}(F \otimes G) \wedge_{i, j} v_{i} \otimes w_{j} & =\wedge_{j}\left(\wedge_{i} F\left(v_{i}\right) \otimes G\left(w_{j}\right)\right) \\
& =\wedge_{j}\left(\wedge F\left(v_{i}\right)\right) \otimes G\left(w_{j}\right) \\
& =\wedge_{j} \operatorname{det} F\left(\wedge_{i}\right) \otimes G\left(w_{j}\right) \\
& =(\operatorname{det} F)^{b} \wedge_{j}\left(\wedge v_{i}\right) \otimes G\left(w_{j}\right) \\
& =(\operatorname{det} F)^{b} \wedge_{i} v_{i} \otimes\left(\wedge_{j} G\left(w_{j}\right)\right) \\
& =(\operatorname{det} F)^{b} \wedge_{i} v_{i} \otimes \operatorname{det} G \wedge_{j} w_{j} \\
& =(\operatorname{det} F)^{b}(\operatorname{det} G)^{a} \wedge_{i, j} v_{i} \otimes w_{j}
\end{aligned}
$$

(b): Write $F v_{i}=\sum f_{i, j} v_{j}$ and $G w_{i}=\sum g_{i, j} w_{j}$. Then $\left(v_{i} \otimes w_{j}\right)$ is a basis of $V \otimes_{F} W$ and we compute $(F \otimes G)\left(v_{i} \otimes w_{j}\right)=F\left(v_{i}\right) \otimes G\left(w_{j}\right)=\left(\sum f_{i, k} v_{k}\right) \otimes\left(\sum g_{j, l} w_{l}\right)=\sum_{k, l} f_{i, k} g_{j, l} v_{k} \otimes w_{l}$. Thus the matrix of $F \otimes G$ indexed by pairs $(i, j)$ is $\left(f_{i, k} g_{j, l}\right)_{(i, j),(k, l)}$.
3. Let $K$ be a field and $v$ a discrete valuation on $K$. For $\alpha \in(1, \infty)$ recall that $|x|:=\alpha^{-v(x)}$.
(a) Show that every point in the interior of an open ball in this metric space is a center for the open ball.
(b) Show that every open ball in the metric space $K$ is closed.

Proof. (a): Suppose $B_{x, r}$ is the open ball of radius $r$ centered at $x$. Suppose $y \in B$. Then $|x-y|<r$. If $z \in B$ then $|z-y|=|z-x+x-y| \leq \max (|z-x|,|x-y|)<r$. We conclude $B_{x, r} \subset B_{y, r}$. Switching $x$ and $y$ we deduce that $B_{x, r}=B_{y, r}$ as desired.
(b): Consider the open ball $B_{x, r}$. It suffices to show that the complement of $B_{x, r}$ is also open. Suppose $z \in K$ such that $|z-x| \geq r$. If $y \in B_{x, r} \cap B_{z, r}$ then the previous part would imply that $B_{x, r}=B_{y, r}=B_{z, r}$ which is not possible as $|z-x| \geq r$. Thus $B_{x, r} \cap B_{z, r}=\emptyset$. We conclude that

$$
K-B_{x, r}=\cup_{z \in K-B_{x, r}} B_{z, r}
$$

and so is open.
4. (a) Compute the integral closure of $\mathbb{Z}$ in $\mathbb{Q}(\sqrt{1997})$.
(b) Let $p>2$ be a prime. Compute the integral closure of $\mathbb{F}_{p}[t]$ in $\mathbb{F}_{p}(\sqrt{t+1})$.

Proof. (a): Write $d=1997$. Note that $\mathbb{Q}(\sqrt{d})=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$. Indeed $\mathbb{Q}(\sqrt{d})=\{P(\sqrt{d}) / Q(\sqrt{d}) \mid P / Q \in$ $\mathbb{Q}(X)\}$. Since $\sqrt{d}^{2} \in \mathbb{Q}$ it follows that $P(\sqrt{d})=m+n \sqrt{d}$ and similarly for $Q(\sqrt{d})$. Finally $1 /(m+n \sqrt{d})=(m-n \sqrt{d}) /\left(m^{2}-d n^{2}\right)$. Thus every element of $\mathbb{Q}(\sqrt{d})$ is of the form $a+b \sqrt{d}$ with $a, b \in \mathbb{Q}$.
The element $\alpha=a+b \sqrt{d}$ satisfies the equation $P(X)=X^{2}-2 a X+a^{2}-d b^{2}=0$. If $\alpha \in \mathbb{Q}$ is integral then necessarily $\alpha \in \mathbb{Z}$ as $\mathbb{Z}$ is integrally closed. If $\alpha \notin \mathbb{Q}$ then $P(X)$ is irreducible in $\mathbb{Q}[X]$. Suppose $\alpha$ satisfies the monic integral equation $Q(X)=0$. Then $P$ and $Q$ have $X-\alpha$ as a common factor in
$\mathbb{Q}(\sqrt{d})[X]$ and so they are not coprime. Since $P$ is irreducible it follows that $P \mid Q$ in $\mathbb{Q}[X]$. But then Gauss' lemma would imply that some multiple of $P$ divides $Q$ in $\mathbb{Z}[X]$. Since $Q$ and $P$ are monic this can only happen if this multiple is $P$ itself and so $P$ must be integral. Then $2 a \in \mathbb{Z}$ and so $a=m / 2$ for some integer $m$. Also $a^{2}-d b^{2}=m^{2} / 4-d b^{2} \in \mathbb{Z}$. But then $d(2 b)^{2} \in \mathbb{Z}$ and so the only possible denominator of $b$ (since $d=1997$ ) is 2 so $b=n / 2$ for some integer $n$. Thus the integral closure consists of $a+b \sqrt{d}$ with $a=m / 2$ and $4 \mid m^{2}-1997 n^{2}$. This is the ring $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$.
(b): As in part (a), $\mathbb{F}_{p}(\sqrt{t+1})=\left\{a+b \sqrt{t+1} \mid a, b \in \mathbb{F}_{p}(X)\right\}$. Again $\mathbb{F}_{p}[X]$ is a PID and Gauss' lemma is satisfied. The integral closure consists of $a+b \sqrt{t+1}$ such that $2 a \in \mathbb{F}_{p}[t]$ and $a^{2}-(t+1) b^{2} \in \mathbb{F}_{p}[t]$. But $p>2$ so 2 is invertible in $\mathbb{F}_{p}[t]$ which implies $a \in \mathbb{F}_{p}[t]$. Thus $(t+1) b^{2} \in \mathbb{F}_{p}[t]$ and unique factorization implies $b \in \mathbb{F}_{p}[t]$. We conclude that the integral closure is $\mathbb{F}_{p}[\sqrt{t+1}]$.
5. Let $R$ be a local integral domain which is not a field. Suppose that the maximal ideal $\mathfrak{m}$ is principal and $\cap \mathfrak{m}^{n}=0$. Show that $R$ is a discrete valuation ring.

Proof. Since $\cap \mathfrak{m}^{n}=0$ every $x \in R-0$ is in some $\mathfrak{m}^{n}$ for some maximal $n$. Declare $v(x)=n$. Write $\mathfrak{m}=(\alpha)$ in which case $x \in\left(\alpha^{n}\right)$ implies $x / \alpha^{n} \in R$. Let $v(x)=n$ and $v(y)=m$ with $n \leq m$. Since $x / \alpha^{n}, y / \alpha^{m} \in R$ it follows that $(x+y) / \alpha^{n} \in R$ and so $v(x+y) \geq n$ by definition.
We only need to check that $v(x y)=m+n$. Certainly $x y \in\left(\alpha^{m+n}\right)$. It suffices to show that $x y \notin$ $\left(\alpha^{m+n+1}\right)$. If this were the case then $\left(x / \alpha^{n}\right)\left(y / \alpha^{m}\right) \in(\alpha)$ and so the product maps to 0 in $R / \mathfrak{m}$. Since this is a field it follows that one of the two factors is 0 in $R /(\alpha)$ which contradicts the choice of $n$ and $m$.
Finally take $K=\operatorname{Frac} R$ and $v(x / y)=v(x)-v(y)$ extends $v$ to a valuation on $K$. Also $\mathcal{O}_{v}=$ $\{x / y \mid v(x) \geq v(y)\}$ which we need to check is equal to $R$. It suffices to show that if $v(y) \leq v(x)$ then $x / y \in R$. But $v\left(y / \alpha^{v(y)}\right)=0$ and so $y / \alpha^{v(y)} \in R-\mathfrak{m}$ is a unit. Thus $x / y=\left(x / \alpha^{v(y)}\right) /\left(y / \alpha^{v(y)}\right)$ is a fraction of elements of $R$ where the denominator is a unit.

