
Graduate Algebra

Homework 2

Due 2015-02-04

1. Let A,B,C,D ∈Mn×n(C).

(a) Show that

det

(
A B

D

)
= det(A) det(D)

(b) If CD = DC show that

det

(
A B
C D

)
= det(AD −BC)

(c) (Optional) Suppose Ai,j ∈Mn×n(C) for 1 ≤ i, j ≤ k are pairwise commuting matrices. Show that

det(Ai,j) = det(
∑
σ∈Sk

ε(σ)

k∏
i=1

Ai,σ(i))

Proof. (a): Consider S such that SAS−1 is upper triangular and T such that TDT−1 is upper

triangular. Let U =

(
S

T

)
. Then U

(
A B

D

)
U−1 =

(
SAS−1 SBT−1

TDT−1

)
is upper triangu-

lar. The determinant of an upper triangular matrix is the product of the diagonal elements and

so det

(
A B

D

)
= detU

(
A B

D

)
U−1 = detSAS−1 detTDT−1 = detA detD.

(b): Since CD = DC we have(
A B
C D

)(
D
−C I2

)
=

(
AD −BC B

d

)
and so

det

(
A B
C D

)
det

(
D
−C I2

)
= det

(
AD −BC B

D

)
which implies

det

(
A B
C D

)
det(D) det(I2) = det(AB − CD) det(D)

This implies the result when det(D) 6= 0.

When det(D) = 0 note that for z ∈ C not an eigenvalue det(D− zI2) 6= 0. But C still commutes with
D − zI2 and so

det

(
A B
C D − zI2

)
= det(A(D − zI2)−BC)

Both LHS and RHS are polynomials in z and the equality occurs for infinitely many values of z. Thus
LHS and RHS are equal as polynomials. Plugging in z = 0 yields the desired result.
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2. Let V and W be F -vector spaces of dimensions a and b. Let F ∈ EndF (V ) and G ∈ EndF (W ).

(a) Show that
det(F ⊗G) = det(F )b det(G)a

(b) If F = (fi,j) and G = (gi,j) for some bases of V and W , what is F ⊗ G for the tensor product
basis of V ⊗F W?

Proof. (a): Let vi be a basis of V and wj a basis of W . Then vi ⊗ wj is a basis of V ⊗F W . We
compute

det(F ⊗G) ∧i,j vi ⊗ wj = ∧j(∧iF (vi)⊗G(wj))

= ∧j(∧F (vi))⊗G(wj)

= ∧j detF (∧vi)⊗G(wj)

= (detF )b ∧j (∧vi)⊗G(wj)

= (detF )b ∧i vi ⊗ (∧jG(wj))

= (detF )b ∧i vi ⊗ detG ∧j wj
= (detF )b(detG)a ∧i,j vi ⊗ wj

(b): Write Fvi =
∑
fi,jvj and Gwi =

∑
gi,jwj . Then (vi ⊗wj) is a basis of V ⊗F W and we compute

(F ⊗G)(vi ⊗ wj) = F (vi) ⊗G(wj) = (
∑
fi,kvk) ⊗ (

∑
gj,lwl) =

∑
k,l fi,kgj,lvk ⊗ wl. Thus the matrix

of F ⊗G indexed by pairs (i, j) is (fi,kgj,l)(i,j),(k,l).

3. Let K be a field and v a discrete valuation on K. For α ∈ (1,∞) recall that |x| := α−v(x).

(a) Show that every point in the interior of an open ball in this metric space is a center for the open
ball.

(b) Show that every open ball in the metric space K is closed.

Proof. (a): Suppose Bx,r is the open ball of radius r centered at x. Suppose y ∈ B. Then |x− y| < r.
If z ∈ B then |z− y| = |z−x+x− y| ≤ max(|z−x|, |x− y|) < r. We conclude Bx,r ⊂ By,r. Switching
x and y we deduce that Bx,r = By,r as desired.

(b): Consider the open ball Bx,r. It suffices to show that the complement of Bx,r is also open.
Suppose z ∈ K such that |z − x| ≥ r. If y ∈ Bx,r ∩ Bz,r then the previous part would imply that
Bx,r = By,r = Bz,r which is not possible as |z − x| ≥ r. Thus Bx,r ∩Bz,r = ∅. We conclude that

K −Bx,r = ∪z∈K−Bx,r
Bz,r

and so is open.

4. (a) Compute the integral closure of Z in Q(
√

1997).

(b) Let p > 2 be a prime. Compute the integral closure of Fp[t] in Fp(
√
t+ 1).

Proof. (a): Write d = 1997. Note that Q(
√
d) = {a+b

√
d|a, b ∈ Q}. Indeed Q(

√
d) = {P (

√
d)/Q(

√
d)|P/Q ∈

Q(X)}. Since
√
d
2
∈ Q it follows that P (

√
d) = m + n

√
d and similarly for Q(

√
d). Finally

1/(m + n
√
d) = (m − n

√
d)/(m2 − dn2). Thus every element of Q(

√
d) is of the form a + b

√
d with

a, b ∈ Q.

The element α = a+ b
√
d satisfies the equation P (X) = X2− 2aX + a2− db2 = 0. If α ∈ Q is integral

then necessarily α ∈ Z as Z is integrally closed. If α /∈ Q then P (X) is irreducible in Q[X]. Suppose
α satisfies the monic integral equation Q(X) = 0. Then P and Q have X − α as a common factor in
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Q(
√
d)[X] and so they are not coprime. Since P is irreducible it follows that P | Q in Q[X]. But then

Gauss’ lemma would imply that some multiple of P divides Q in Z[X]. Since Q and P are monic this
can only happen if this multiple is P itself and so P must be integral. Then 2a ∈ Z and so a = m/2
for some integer m. Also a2 − db2 = m2/4 − db2 ∈ Z. But then d(2b)2 ∈ Z and so the only possible
denominator of b (since d = 1997) is 2 so b = n/2 for some integer n. Thus the integral closure consists

of a+ b
√
d with a = m/2 and 4 | m2 − 1997n2. This is the ring Z[ 1+

√
d

2 ].

(b): As in part (a), Fp(
√
t+ 1) = {a+ b

√
t+ 1|a, b ∈ Fp(X)}. Again Fp[X] is a PID and Gauss’ lemma

is satisfied. The integral closure consists of a+ b
√
t+ 1 such that 2a ∈ Fp[t] and a2 − (t+ 1)b2 ∈ Fp[t].

But p > 2 so 2 is invertible in Fp[t] which implies a ∈ Fp[t]. Thus (t + 1)b2 ∈ Fp[t] and unique
factorization implies b ∈ Fp[t]. We conclude that the integral closure is Fp[

√
t+ 1].

5. Let R be a local integral domain which is not a field. Suppose that the maximal ideal m is principal
and ∩mn = 0. Show that R is a discrete valuation ring.

Proof. Since ∩mn = 0 every x ∈ R − 0 is in some mn for some maximal n. Declare v(x) = n. Write
m = (α) in which case x ∈ (αn) implies x/αn ∈ R. Let v(x) = n and v(y) = m with n ≤ m. Since
x/αn, y/αm ∈ R it follows that (x+ y)/αn ∈ R and so v(x+ y) ≥ n by definition.

We only need to check that v(xy) = m + n. Certainly xy ∈ (αm+n). It suffices to show that xy /∈
(αm+n+1). If this were the case then (x/αn)(y/αm) ∈ (α) and so the product maps to 0 in R/m. Since
this is a field it follows that one of the two factors is 0 in R/(α) which contradicts the choice of n and
m.

Finally take K = FracR and v(x/y) = v(x) − v(y) extends v to a valuation on K. Also Ov =
{x/y|v(x) ≥ v(y)} which we need to check is equal to R. It suffices to show that if v(y) ≤ v(x) then
x/y ∈ R. But v(y/αv(y)) = 0 and so y/αv(y) ∈ R − m is a unit. Thus x/y = (x/αv(y))/(y/αv(y)) is a
fraction of elements of R where the denominator is a unit.
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